Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Fluorescence Technique Measures Photoacid Distribution in Photoresists with Nanoscale Resolution

Schematic showing fluorescence from UV-activated fluorophores excited by 532 nm light that reveals nanoscale photoacid distribution (left).  Activated fluorophore concentration corresponds to the inverse of the original photoacid distribution (right).
Schematic showing fluorescence from UV-activated fluorophores excited by 532 nm light that reveals nanoscale photoacid distribution (left). Activated fluorophore concentration corresponds to the inverse of the original photoacid distribution (right).

Abstract:
A team of researchers from the NIST Center for Nanoscale Science and Technology, the University of Maryland, and Korea University (Seoul, Korea) has measured the nanoscale distribution of photoacid molecules in photoresists using a fluorescence technique originally developed to provide images of biological structures smaller than the wavelength of light.* Photoresists are light-sensitive chemicals used for manufacturing the semiconductor integrated circuits found in computers and other electronics. By measuring the chemical reactions in photoresists at a smaller length scale, this method potentially opens a path to manufacturing smaller electronic devices.

Fluorescence Technique Measures Photoacid Distribution in Photoresists with Nanoscale Resolution

Gaithersburg, MD | Posted on April 17th, 2013

In today's photoresists, chemical amplification of light allows for the use of low-brightness short-wavelength light sources, which enable smaller feature sizes to be printed at higher throughputs. Each individual photon activates a molecule which generates a photoacid. During post-exposure baking, the photoacid diffuses, rendering a volume of the resist soluble to developer. This improves the sensitivity, or photospeed, of the resist, but at the cost of degraded image resolution: a result of the photoacid diffusion. Until now, it has only been possible to infer indirectly where the photoacid molecules are produced or how they diffuse by analyzing the resist images after the resist is fully exposed, either before or after it is developed. A more direct measurement is critically needed, however, because the distribution of the photoacid molecules within a resist film limits the minimum feature sizes that can be produced on computer chips. Precise measurements can help photoresist manufacturers understand the processes that lead to loss of image contrast and develop measures to mitigate blur induced by photoacid diffusion.

To observe the location of the photoacid molecules more directly, the research team used a novel fluorescent dye that can be switched from a dark to bright state either by exposure to ultraviolet light or by reaction with a nearby acid molecule. Over time, they fit the fluorescent signal of each dye molecule to a two-dimensional distribution, allowing them to map the locations of the associated photoacid molecules with single-molecule sensitivity. The team also developed new statistical analysis methods that enable them to extract high-resolution information even when there is a very low concentration of fluorescent molecules. This method allows them to be confident that the behavior of the system is not changed by the presence of the fluorophores.

Ultimately, the researchers believe that these techniques will be useful for measuring nanoscale transport processes in a wide variety of soft-matter systems beyond photoresists, such as in polymers.

*Super-resolution optical measurement of nanoscale photoacid distribution in lithographic materials, A. J. Berro, A. J. Berglund, P. T. Carmichael, J. S. Kim, and J. A. Liddle, ACS Nano 6, 9496-9502 (2012).

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
J. Alexander Liddle
301-975-6050

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

NIST Publication Database:

Journal Web Site:

Related News Press

News and information

Seeing quantum motion August 30th, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Draw out of the predicted interatomic force August 30th, 2015

Imaging

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

50 Years of Scanning Electron Microscopy from ZEISS: ZEISS celebrates the birth of the first commercial scanning electron microscope in 1965 August 26th, 2015

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

Kwansei Gakuin University in Hyogo, Japan, uses Raman microscopy to study crystallographic defects in silicon carbide wafers August 25th, 2015

Laboratories

Major innovation in molecular imaging delivers spatial and spectral info simultaneously: Berkeley Lab scientist invents technique to combine spectroscopy with super-resolution microscopy, enabling new ways to examine cell structures and study diseases August 17th, 2015

Drexel engineers 'sandwich' atomic layers to make new materials for energy storage August 15th, 2015

Surprising discoveries about 2-D molybdenum disulfide: Berkeley Lab researchers use award-winning campanile probe on promising semiconductor August 15th, 2015

New ORNL hybrid microscope offers unparalleled capabilities August 10th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Seeing quantum motion August 30th, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Draw out of the predicted interatomic force August 30th, 2015

Nanomedicine

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Iranian Scientists Use Artemisia Annua Plant to Produce Breast Cancer Drugs August 29th, 2015

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

Discoveries

Seeing quantum motion August 30th, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Draw out of the predicted interatomic force August 30th, 2015

Announcements

Seeing quantum motion August 30th, 2015

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

Researchers use DNA 'clews' to shuttle CRISPR-Cas9 gene-editing tool into cells August 30th, 2015

Draw out of the predicted interatomic force August 30th, 2015

Research partnerships

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

Researchers combine disciplines, computational programs to determine atomic structure August 26th, 2015

Developing Component Scale Composites Using Nanocarbons August 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic