Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Fluorescence Technique Measures Photoacid Distribution in Photoresists with Nanoscale Resolution

Schematic showing fluorescence from UV-activated fluorophores excited by 532 nm light that reveals nanoscale photoacid distribution (left).  Activated fluorophore concentration corresponds to the inverse of the original photoacid distribution (right).
Schematic showing fluorescence from UV-activated fluorophores excited by 532 nm light that reveals nanoscale photoacid distribution (left). Activated fluorophore concentration corresponds to the inverse of the original photoacid distribution (right).

Abstract:
A team of researchers from the NIST Center for Nanoscale Science and Technology, the University of Maryland, and Korea University (Seoul, Korea) has measured the nanoscale distribution of photoacid molecules in photoresists using a fluorescence technique originally developed to provide images of biological structures smaller than the wavelength of light.* Photoresists are light-sensitive chemicals used for manufacturing the semiconductor integrated circuits found in computers and other electronics. By measuring the chemical reactions in photoresists at a smaller length scale, this method potentially opens a path to manufacturing smaller electronic devices.

Fluorescence Technique Measures Photoacid Distribution in Photoresists with Nanoscale Resolution

Gaithersburg, MD | Posted on April 17th, 2013

In today's photoresists, chemical amplification of light allows for the use of low-brightness short-wavelength light sources, which enable smaller feature sizes to be printed at higher throughputs. Each individual photon activates a molecule which generates a photoacid. During post-exposure baking, the photoacid diffuses, rendering a volume of the resist soluble to developer. This improves the sensitivity, or photospeed, of the resist, but at the cost of degraded image resolution: a result of the photoacid diffusion. Until now, it has only been possible to infer indirectly where the photoacid molecules are produced or how they diffuse by analyzing the resist images after the resist is fully exposed, either before or after it is developed. A more direct measurement is critically needed, however, because the distribution of the photoacid molecules within a resist film limits the minimum feature sizes that can be produced on computer chips. Precise measurements can help photoresist manufacturers understand the processes that lead to loss of image contrast and develop measures to mitigate blur induced by photoacid diffusion.

To observe the location of the photoacid molecules more directly, the research team used a novel fluorescent dye that can be switched from a dark to bright state either by exposure to ultraviolet light or by reaction with a nearby acid molecule. Over time, they fit the fluorescent signal of each dye molecule to a two-dimensional distribution, allowing them to map the locations of the associated photoacid molecules with single-molecule sensitivity. The team also developed new statistical analysis methods that enable them to extract high-resolution information even when there is a very low concentration of fluorescent molecules. This method allows them to be confident that the behavior of the system is not changed by the presence of the fluorophores.

Ultimately, the researchers believe that these techniques will be useful for measuring nanoscale transport processes in a wide variety of soft-matter systems beyond photoresists, such as in polymers.

*Super-resolution optical measurement of nanoscale photoacid distribution in lithographic materials, A. J. Berro, A. J. Berglund, P. T. Carmichael, J. S. Kim, and J. A. Liddle, ACS Nano 6, 9496-9502 (2012).

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
J. Alexander Liddle
301-975-6050

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

NIST Publication Database:

Journal Web Site:

Related News Press

News and information

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Laboratories

National Synchrotron Light Source II Achieves 'First Light' October 23rd, 2014

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

Imaging

National Synchrotron Light Source II Achieves 'First Light' October 23rd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

Nanomedicine

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

Iranian Scientists Apply Nanotechnology to Produce Surgery Suture October 23rd, 2014

RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials October 23rd, 2014

Sopping up proteins with thermosponges: Researchers develop novel nanoparticle platform that proves effective in delivering protein-based drugs October 22nd, 2014

Discoveries

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Announcements

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Research partnerships

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials October 23rd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE