Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Michigan Tech Scientist's Discovery Could Lead to a Better Capacitor

The non-aligned manganese dioxide nanorods on the left were made using conventional methods. The aligned nanorods on the right were grown in Dennis Desheng Meng's lab using electrophoretic deposition. Photos by Sunand Santhanagopalan
The non-aligned manganese dioxide nanorods on the left were made using conventional methods. The aligned nanorods on the right were grown in Dennis Desheng Meng's lab using electrophoretic deposition. Photos by Sunand Santhanagopalan

Abstract:
A new process for growing forests of manganese dioxide nanorods may lead to the next generation of high-performance capacitors.

Michigan Tech Scientist's Discovery Could Lead to a Better Capacitor

Houghton, MI | Posted on April 16th, 2013

As an energy-storage material for batteries and capacitors, manganese dioxide has a lot going for it: it's cheap, environmentally friendly and abundant. However, chemical capacitors made with manganese dioxide have lacked the power of the typical carbon-based physical capacitor. Michigan Technological University scientist Dennis Desheng Meng theorized that the situation could be improved if the manganese dioxide were made into nanorods, which are like nanotubes, only solid instead of hollow. However, a stumbling block has been making manganese dioxide nanorods with the right set of attributes. Until now, researchers have been able to grow nanorods that either have the best crystalline structure or were aligned, but not both.

Now, Meng's research group has developed a technique to grow manganese dioxide nanorods that are not only straight and tall (at least by nano-standards), but also have the optimal crystal structure, known as α-MnO2.

This minimizes the internal resistance, allowing the capacitor to charge and discharge repeatedly without wearing out. That's a recipe for a better capacitor: it can store more energy, extract that energy more quickly, and work longer between rechargings. Plus, it can be used over and over again. Even after Meng's group recharged their capacitor more than 2,000 times, it was still able to regain over 90 percent of its original charge.

Meng's device belongs to the family of chemical, or reduction-oxidation, capacitors. They are hybrids between physical supercapacitors, which release a burst of energy and discharge quickly, and batteries, which generally store more energy and release it gradually over a longer period. Typically, chemical capacitors have more energy and less power than the physical ones.

The chemical capacitors made with Meng's manganese dioxide nanorods offer the best of both worlds: they hold more energy, like a battery, plus they yield even more power than a comparable carbon-based physical capacitor.

His team was able to grow a nanoforest of manganese dioxide nanorods using electrophoretic deposition, a technique in which small particles are deposited on a substrate under the influence of an electric field. The process is not especially difficult. "We did it in a lab, but this is scalable manufacturing," he says. "We can continuously print it out in a roll-to-roll manner, and you can make the substrate very large if you like."

Capacitors made with manganese dioxide nanorods could help hybrid and electric vehicles accelerate more quickly or could be coupled with solar cells. "The process also opens the door for many other applications, not just supercapacitors," says Meng.

####

About Michigan Technological University
Michigan Technological University (www.mtu.edu) is a leading public research university developing new technologies and preparing students to create the future for a prosperous and sustainable world. Michigan Tech offers more than 130 undergraduate and graduate degree programs in engineering; forest resources; computing; technology; business; economics; natural, physical and environmental sciences; arts; humanities; and social sciences.

For more information, please click here

Contacts:
Marcia Goodrich

906-231-2551

Copyright © Michigan Technological University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Meng’s research is described in the article “Scalable High-Power Redox Capacitors with Aligned Nanoforests of Crystalline MnO2 Nanorods by High-Voltage Electrophoretic Deposition” (http://pubs.acs.org/doi/abs/10.1021/nn3044462), which was published online Feb. 1 in ACS Nano:

Related News Press

News and information

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Discoveries

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Announcements

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

Energy

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

Automotive/Transportation

Making Batteries From Waste Glass Bottles: UCR researchers are turning glass bottles into high performance lithium-ion batteries for electric vehicles and personal electronics April 19th, 2017

BASF and Landa partner to create revolutionary pigments for automotive coatings: The alliance combines BASF innovations with Landa nano-pigment technology April 5th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX® Technology Platform: Leading-edge I-fuse™ brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

Forge Nano 2017: 1st Quarter Media Update April 20th, 2017

Making Batteries From Waste Glass Bottles: UCR researchers are turning glass bottles into high performance lithium-ion batteries for electric vehicles and personal electronics April 19th, 2017

Bio-inspired energy storage: A new light for solar power: Graphene-based electrode prototype, inspired by fern leaves, could be the answer to solar energy storage challenge April 2nd, 2017

Solar/Photovoltaic

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

Controlling forces between atoms, molecules, promising for ‘2-D hyperbolic’ materials April 4th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project