Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Michigan Tech Scientist's Discovery Could Lead to a Better Capacitor

The non-aligned manganese dioxide nanorods on the left were made using conventional methods. The aligned nanorods on the right were grown in Dennis Desheng Meng's lab using electrophoretic deposition. Photos by Sunand Santhanagopalan
The non-aligned manganese dioxide nanorods on the left were made using conventional methods. The aligned nanorods on the right were grown in Dennis Desheng Meng's lab using electrophoretic deposition. Photos by Sunand Santhanagopalan

Abstract:
A new process for growing forests of manganese dioxide nanorods may lead to the next generation of high-performance capacitors.

Michigan Tech Scientist's Discovery Could Lead to a Better Capacitor

Houghton, MI | Posted on April 16th, 2013

As an energy-storage material for batteries and capacitors, manganese dioxide has a lot going for it: it's cheap, environmentally friendly and abundant. However, chemical capacitors made with manganese dioxide have lacked the power of the typical carbon-based physical capacitor. Michigan Technological University scientist Dennis Desheng Meng theorized that the situation could be improved if the manganese dioxide were made into nanorods, which are like nanotubes, only solid instead of hollow. However, a stumbling block has been making manganese dioxide nanorods with the right set of attributes. Until now, researchers have been able to grow nanorods that either have the best crystalline structure or were aligned, but not both.

Now, Meng's research group has developed a technique to grow manganese dioxide nanorods that are not only straight and tall (at least by nano-standards), but also have the optimal crystal structure, known as α-MnO2.

This minimizes the internal resistance, allowing the capacitor to charge and discharge repeatedly without wearing out. That's a recipe for a better capacitor: it can store more energy, extract that energy more quickly, and work longer between rechargings. Plus, it can be used over and over again. Even after Meng's group recharged their capacitor more than 2,000 times, it was still able to regain over 90 percent of its original charge.

Meng's device belongs to the family of chemical, or reduction-oxidation, capacitors. They are hybrids between physical supercapacitors, which release a burst of energy and discharge quickly, and batteries, which generally store more energy and release it gradually over a longer period. Typically, chemical capacitors have more energy and less power than the physical ones.

The chemical capacitors made with Meng's manganese dioxide nanorods offer the best of both worlds: they hold more energy, like a battery, plus they yield even more power than a comparable carbon-based physical capacitor.

His team was able to grow a nanoforest of manganese dioxide nanorods using electrophoretic deposition, a technique in which small particles are deposited on a substrate under the influence of an electric field. The process is not especially difficult. "We did it in a lab, but this is scalable manufacturing," he says. "We can continuously print it out in a roll-to-roll manner, and you can make the substrate very large if you like."

Capacitors made with manganese dioxide nanorods could help hybrid and electric vehicles accelerate more quickly or could be coupled with solar cells. "The process also opens the door for many other applications, not just supercapacitors," says Meng.

####

About Michigan Technological University
Michigan Technological University (www.mtu.edu) is a leading public research university developing new technologies and preparing students to create the future for a prosperous and sustainable world. Michigan Tech offers more than 130 undergraduate and graduate degree programs in engineering; forest resources; computing; technology; business; economics; natural, physical and environmental sciences; arts; humanities; and social sciences.

For more information, please click here

Contacts:
Marcia Goodrich

906-231-2551

Copyright © Michigan Technological University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Meng’s research is described in the article “Scalable High-Power Redox Capacitors with Aligned Nanoforests of Crystalline MnO2 Nanorods by High-Voltage Electrophoretic Deposition” (http://pubs.acs.org/doi/abs/10.1021/nn3044462), which was published online Feb. 1 in ACS Nano:

Related News Press

News and information

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Leti Presents Advances in Propagation Modeling and Antenna Design for mmWave Spectrum: Paper Is One of 15 that Leti Presented at European Conference on Antennas and Propagation March 19-24 March 23rd, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Discoveries

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Announcements

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Energy

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Researchers develop groundbreaking process for creating ultra-selective separation membranes: Discovery could greatly improve energy-efficiency of separation and purification processes in the chemical and petrochemical industries March 15th, 2017

Automotive/Transportation

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

CRMGroup in Belgium uses a Deben three point bending stage in the development of new steel & coated steel products for automotive and other industrial applications March 21st, 2017

New nanofiber marks important step in next generation battery development March 14th, 2017

TriboTEX Uses Nanotechnology to Improve the Efficiency of Old Vehicles March 13th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

New nanofiber marks important step in next generation battery development March 14th, 2017

Imaging the inner workings of a sodium-metal sulfide battery for first time: Understanding how the structural and chemical makeup of the material changes during the charge/discharge process could help scientists advance battery design for future energy storage needs March 9th, 2017

Tweaking electrolyte makes better lithium-metal batteries: A pinch of electrolyte additive gives rechargeable battery stability, longer life March 2nd, 2017

Solar/Photovoltaic

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

New nanofiber marks important step in next generation battery development March 14th, 2017

Perovskite edges can be tuned for optoelectronic performance: Layered 2D material improves efficiency for solar cells and LEDs March 10th, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project