Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UCLA engineers craft material for high-performance 'supercapacitor' : Discovery could provide rapid power to small devices, large industrial equipment

Abstract:
Taking a significant step toward improving the power delivery of systems ranging from urban electrical grids to regenerative braking in hybrid vehicles, researchers at the UCLA Henry Samueli School of Engineering and Applied Science have synthesized a material that shows high capability for both the rapid storage and release of energy.

UCLA engineers craft material for high-performance 'supercapacitor' : Discovery could provide rapid power to small devices, large industrial equipment

Los Angeles, CA | Posted on April 14th, 2013

In a paper published in the April 14 issue of the journal Nature Materials, a team led by professor of materials science and engineering Bruce Dunn defines the characteristics of a synthesized form of niobium oxide with a great facility for storing energy. The material would be used in a "supercapacitor," a device that combines the high storage capacity of lithium ion batteries and the rapid energy-delivery ability of common capacitors.

UCLA researchers said the development could lead to extremely rapid charging of devices, ranging in applications from mobile electronics to industrial equipment. For example, supercapacitors are currently used in energy-capture systems that help power loading cranes at ports, reducing the use of hydrocarbon fuels such as diesel.

"With this work, we are blurring the lines between what is a battery and what is a supercapacitor," said Veronica Augustyn, a graduate student in materials science at UCLA and lead author of the paper. "The discovery takes the disadvantages of capacitors and the disadvantages of batteries and does away with them."

Batteries effectively store energy but do not deliver power efficiently because the charged carriers, or ions, move slowly through the solid battery material. Capacitors, which store energy at the surface of a material, generally have low storage capabilities.

Researchers on Dunn's team synthesized a type of niobium oxide that demonstrates substantial storage capacity through "intercalation pseudocapacitance," in which ions are deposited into the bulk of the niobium oxide in the same way grains of sand can be deposited between pebbles.

As a result, electrodes as much as 40 microns thick — about the same width as many commercial battery components — can quickly store and deliver energy on the same time scales as electrodes more than 100 times thinner.

Dunn emphasizes that although the electrodes are an important first step, "further engineering at the nanoscale and beyond will be necessary to achieve practical devices with high energy density that can charge in under a minute."

Co-authors of the study included Dunn; Sarah Tolbert, a UCLA chemistry and biochemistry professor; Augustyn and fellow UCLA Engineering graduate student Jong Woung Kim; Cornell University professor Héctor Abruña; Cornell postgraduate researcher Michael Lowe; Patrice Simon, a professor at the Université Paul Sabatier in Toulouse, France; and graduate student Jérémy Come and researcher Pierre-Louis Taberna of the Université Paul Sabatier.

The research from the Energy Frontier Research Centers, UCLA-based Molecularly Engineered Energy Materials and Cornell-based Energy Materials Center, was supported by the U.S. Department of Energy Office of Basic Energy; a European Research Council grant supported researh from Université Paul Sabatier.

####

About University of California - Los Angeles
The UCLA Henry Samueli School of Engineering and Applied Science, established in 1945, offers 28 academic and professional degree programs and has an enrollment of more than 5,000 students. The school's distinguished faculty are leading research to address many of the critical challenges of the 21st century, including renewable energy, clean water, health care, wireless sensing and networking, and cyber-security. Ranked among the top 10 engineering schools at public universities nationwide, the school is home to eight multimillion-dollar interdisciplinary research centers in wireless sensor systems, wireless health, nanoelectronics, nanomedicine, renewable energy, customized computing, the smart grid, and the Internet, all funded by federal and private agencies and individual donors.

For more information, please click here

Contacts:
Bill Kisliuk

310-206-0540

Copyright © University of California - Los Angeles

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Discoveries

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Announcements

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Industrial

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

A flexible new platform for high-performance electronics September 29th, 2017

GLOBALFOUNDRIES Announces Availability of Embedded MRAM on Leading 22FDX® FD-SOI Platform: Advanced embedded non-volatile memory solution delivers ‘connected intelligence’ by expanding SoC capabilities on the 22nm process node September 20th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

On the road to fire-free, lithium-ion batteries made with asphalt October 12th, 2017

Organic/inorganic sulfur may be key for safe rechargeable lithium batteries October 12th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

A revolution in lithium-ion batteries is becoming more realistic September 5th, 2017

Research partnerships

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

More 22 of 59,885 Print all In new window Leti to Present Update of CoolCube/3DVLSI Technologies Development at 2017 IEEE S3S: Future Developments and Tape-Out Vehicles to Be Presented during Oct. 17 Workshop October 12th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project