Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Interdisciplinary team demonstrates superconducting qualities of topological insulators: Findings may prove useful in search for elusive Majorana quasiparticle

Top left: SEM image of a typical device. Mechanically exfoliated Bi2Se3 thin film is colored as brown and contact metals consist of Ti(2.5nm)/Al(140nm). Top right: Hall data where red curve is longitudinal resistivity and blue curve is Hall carrier density as a function of gate voltage. Bottom figure: 2D plot of differential resistance as a function of gate voltage(x axis) and current(y axis). Purple region in the center corresponds to zero differential resistance (superconducting regime)
Credit: Sungjae Cho, Department of Physics & Frederick Seitz Materials Research Laboratory
Top left: SEM image of a typical device. Mechanically exfoliated Bi2Se3 thin film is colored as brown and contact metals consist of Ti(2.5nm)/Al(140nm). Top right: Hall data where red curve is longitudinal resistivity and blue curve is Hall carrier density as a function of gate voltage. Bottom figure: 2D plot of differential resistance as a function of gate voltage(x axis) and current(y axis). Purple region in the center corresponds to zero differential resistance (superconducting regime)

Credit: Sungjae Cho, Department of Physics & Frederick Seitz Materials Research Laboratory

Abstract:
Topological insulators (TIs) are an exciting new type of material that on their surface carry electric current, but within their bulk, act as insulators. Since the discovery of TIs about a decade ago, their unique characteristics (which point to potential applications in quantum computing) have been explored theoretically, and in the last five years, experimentally.

Interdisciplinary team demonstrates superconducting qualities of topological insulators: Findings may prove useful in search for elusive Majorana quasiparticle

Urbana, IL | Posted on April 10th, 2013



But where in theory, the bulk of TIs carry no current, in the laboratory, impurities and disorder in real materials mean that the bulk is, in fact, conductive. This has proven an obstacle to experimentation with TIs: findings from prior experiments designed to test the surface conductivity of TIs unavoidably included contributions from the surplus of electrons in the bulk.

Now an interdisciplinary research team at the University of Illinois at Urbana-Champaign, in collaboration with researchers at Brookhaven National Laboratory's Condensed Matter Physics and Materials Science Department, has measured superconductive surface states in TIs where the bulk charge carriers were successfully depleted. The research paper, "Symmetry protected Josephson supercurrents in three-dimensional topological insulators," was published this week in Nature Communications.

The experiments, conducted in the laboratory of Illinois condensed matter physicist Nadya Mason at the Frederick Seitz Materials Research Laboratory, were carried out by postdoctoral research associate Sungjae Cho using TI material—specially developed by the Brookhaven team—coupled to superconducting leads.

To deplete the electrons in the bulk, the team used three strategies: the TI material was doped with antimony, then it was doped at the surface with a chemical with strong electron affinity, and finally an electrostatic gate was used to apply voltage that lowered the energy of the entire system.

"One of the main results we found," said Mason, "was in comparing the two experimental regimes, pure surface (bulk depleted of electrons) vs. bulk (excess electrons present in impurities in bulk material). We learned that even when you have the bulk, the superconductivity always goes through the surface of the material."

This finding was established by comparing experiments with theoretical modeling by research team members at Illinois's Department of Electrical and Computer Engineering—Assistant Professor Matthew Gilbert and graduate student Brian Dellabetta—which showed that superconductivity occured only at the surface of topological insulators and that this is a unique characteristic of these new materials.

It's been predicted that TIs harbor the highly sought Majorana quasiparticle, a fermion which is theorized to be its own antiparticle and which if discovered, could serve as a quantum bit in quantum computing.

"Since we now have a better understanding of how topological insulators behave with regard to superconductivity, this will assist our search for the Majorana quasiparticle," Mason explained.

The team also plans to investigate the same experimental configuration at lower energy to further explore its characteristics.

"The potential of this new material is very exciting. We are exploring possible uses for TIs in terms of conventional electronic devices and novel devices," said Mason. "And if we can find the new particle predicted to exist in the material's solid state, and then learn to manipulate its position relative to a second particle, we could use it for quantum computation.

"The implications for quantum computing are truly profound," she explained. "With today's technology, computer components really can't get much smaller. If Majoranas behave as predicted and can be manipulated to serve as quantum bits, our future computers would be extraordinarily powerful; their components would be much smaller and would be able to store much more information."

This research was funded by a grant from the Office of Naval Research under grant N0014-11-1-0728.

####

For more information, please click here

Contacts:
Nadya Mason

217-244-9114

Writer:
Siv Schwink
Department of Physics
217/552-5671

Copyright © University of Illinois College of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

CiQUS researchers design an artificial nose to detect DNA differentiation with single nucleotide resolution September 18th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

FEI Opens New Technology Center in Czech Republic: FEI expands its presence in Brno with the opening of a new, larger facility September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Superconductivity

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Physics

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Nano-pea pod model widens electronics applications: A new theoretical model explains how a nanostructure, such as the nano-pea pod, can exhibit localised electrons September 4th, 2014

Cool Calculations for Cold Atoms: New theory of universal three-body encounters September 2nd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Chip Technology

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Researchers Create World’s Largest DNA Origami September 11th, 2014

Quantum Computing

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Secure Computing for the ‘Everyman': Quantum computing goes to market in tech transfer agreement with Allied Minds September 2nd, 2014

New synthesis method may shape future of nanostructures, clean energy: Findings advance efficient solar spliting of water into hydrogen fuel September 2nd, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Discoveries

CiQUS researchers design an artificial nose to detect DNA differentiation with single nucleotide resolution September 18th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Announcements

Wear-resistant ceramic powder maximises component lifespan in high-stress applications: Innovnano’s nanostructured 3YSZ offers improved tribological performance for manufacturing components September 18th, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

FEI Opens New Technology Center in Czech Republic: FEI expands its presence in Brno with the opening of a new, larger facility September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Military

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

'Squid skin' metamaterials project yields vivid color display: Rice lab creates RGB color display technology with aluminum nanorods September 15th, 2014

Fonon at Cutting-Edge of 3D Military Printing: Live-Combat Scenarios Could See a Decisive Advantage with 3D Printing September 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE