Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Interdisciplinary team demonstrates superconducting qualities of topological insulators: Findings may prove useful in search for elusive Majorana quasiparticle

Top left: SEM image of a typical device. Mechanically exfoliated Bi2Se3 thin film is colored as brown and contact metals consist of Ti(2.5nm)/Al(140nm). Top right: Hall data where red curve is longitudinal resistivity and blue curve is Hall carrier density as a function of gate voltage. Bottom figure: 2D plot of differential resistance as a function of gate voltage(x axis) and current(y axis). Purple region in the center corresponds to zero differential resistance (superconducting regime)
Credit: Sungjae Cho, Department of Physics & Frederick Seitz Materials Research Laboratory
Top left: SEM image of a typical device. Mechanically exfoliated Bi2Se3 thin film is colored as brown and contact metals consist of Ti(2.5nm)/Al(140nm). Top right: Hall data where red curve is longitudinal resistivity and blue curve is Hall carrier density as a function of gate voltage. Bottom figure: 2D plot of differential resistance as a function of gate voltage(x axis) and current(y axis). Purple region in the center corresponds to zero differential resistance (superconducting regime)

Credit: Sungjae Cho, Department of Physics & Frederick Seitz Materials Research Laboratory

Abstract:
Topological insulators (TIs) are an exciting new type of material that on their surface carry electric current, but within their bulk, act as insulators. Since the discovery of TIs about a decade ago, their unique characteristics (which point to potential applications in quantum computing) have been explored theoretically, and in the last five years, experimentally.

Interdisciplinary team demonstrates superconducting qualities of topological insulators: Findings may prove useful in search for elusive Majorana quasiparticle

Urbana, IL | Posted on April 10th, 2013



But where in theory, the bulk of TIs carry no current, in the laboratory, impurities and disorder in real materials mean that the bulk is, in fact, conductive. This has proven an obstacle to experimentation with TIs: findings from prior experiments designed to test the surface conductivity of TIs unavoidably included contributions from the surplus of electrons in the bulk.

Now an interdisciplinary research team at the University of Illinois at Urbana-Champaign, in collaboration with researchers at Brookhaven National Laboratory's Condensed Matter Physics and Materials Science Department, has measured superconductive surface states in TIs where the bulk charge carriers were successfully depleted. The research paper, "Symmetry protected Josephson supercurrents in three-dimensional topological insulators," was published this week in Nature Communications.

The experiments, conducted in the laboratory of Illinois condensed matter physicist Nadya Mason at the Frederick Seitz Materials Research Laboratory, were carried out by postdoctoral research associate Sungjae Cho using TI material—specially developed by the Brookhaven team—coupled to superconducting leads.

To deplete the electrons in the bulk, the team used three strategies: the TI material was doped with antimony, then it was doped at the surface with a chemical with strong electron affinity, and finally an electrostatic gate was used to apply voltage that lowered the energy of the entire system.

"One of the main results we found," said Mason, "was in comparing the two experimental regimes, pure surface (bulk depleted of electrons) vs. bulk (excess electrons present in impurities in bulk material). We learned that even when you have the bulk, the superconductivity always goes through the surface of the material."

This finding was established by comparing experiments with theoretical modeling by research team members at Illinois's Department of Electrical and Computer Engineering—Assistant Professor Matthew Gilbert and graduate student Brian Dellabetta—which showed that superconductivity occured only at the surface of topological insulators and that this is a unique characteristic of these new materials.

It's been predicted that TIs harbor the highly sought Majorana quasiparticle, a fermion which is theorized to be its own antiparticle and which if discovered, could serve as a quantum bit in quantum computing.

"Since we now have a better understanding of how topological insulators behave with regard to superconductivity, this will assist our search for the Majorana quasiparticle," Mason explained.

The team also plans to investigate the same experimental configuration at lower energy to further explore its characteristics.

"The potential of this new material is very exciting. We are exploring possible uses for TIs in terms of conventional electronic devices and novel devices," said Mason. "And if we can find the new particle predicted to exist in the material's solid state, and then learn to manipulate its position relative to a second particle, we could use it for quantum computation.

"The implications for quantum computing are truly profound," she explained. "With today's technology, computer components really can't get much smaller. If Majoranas behave as predicted and can be manipulated to serve as quantum bits, our future computers would be extraordinarily powerful; their components would be much smaller and would be able to store much more information."

This research was funded by a grant from the Office of Naval Research under grant N0014-11-1-0728.

####

For more information, please click here

Contacts:
Nadya Mason

217-244-9114

Writer:
Siv Schwink
Department of Physics
217/552-5671

Copyright © University of Illinois College of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Superconductivity

Physicists create first metamaterial with rewritable magnetic ordering May 23rd, 2016

News and information

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

Two-stage nanoparticle delivery of piperlongumine and TRAIL anti-cancer therapy May 23rd, 2016

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

Graphene makes rubber more rubbery May 23rd, 2016

Physics

Theorists smooth the way to modeling quantum friction: New paradigm offers a strategy for solving one of quantum mechanics' oldest problems May 18th, 2016

How light is detected affects the atom that emits it: An experiment suggests it might be possible to control atoms entangled with the light they emit by manipulating detection May 15th, 2016

Physicists measure van der Waals forces of individual atoms for the first time May 14th, 2016

Atomic force microscope reveals molecular ghosts: Mapping molecules with atomic precision expands toolbox for designing new catalytic reactions May 11th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Programmable materials find strength in molecular repetition May 23rd, 2016

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

ORNL demonstrates large-scale technique to produce quantum dots May 21st, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Chip Technology

Physicists create first metamaterial with rewritable magnetic ordering May 23rd, 2016

Graphene: Progress, not quantum leaps May 23rd, 2016

Researchers demonstrate size quantization of Dirac fermions in graphene: Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices May 20th, 2016

Graphene: A quantum of current - When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene May 20th, 2016

Quantum Computing

Theorists smooth the way to modeling quantum friction: New paradigm offers a strategy for solving one of quantum mechanics' oldest problems May 18th, 2016

Scientists take a major leap toward a 'perfect' quantum metamaterial: Berkeley Lab, UC Berkeley researchers lead study that uses trapped atoms in an artificial crystal of light May 13th, 2016

Spin lifetime anisotropy of graphene is much weaker than previously reported May 10th, 2016

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

Discoveries

Physicists create first metamaterial with rewritable magnetic ordering May 23rd, 2016

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

Two-stage nanoparticle delivery of piperlongumine and TRAIL anti-cancer therapy May 23rd, 2016

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

Announcements

Physicists create first metamaterial with rewritable magnetic ordering May 23rd, 2016

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

Two-stage nanoparticle delivery of piperlongumine and TRAIL anti-cancer therapy May 23rd, 2016

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

Military

Programmable materials find strength in molecular repetition May 23rd, 2016

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

This 'nanocavity' may improve ultrathin solar panels, video cameras and more May 16th, 2016

UW researchers unleash graphene 'tiger' for more efficient optoelectronics May 16th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic