Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > SEMATECH and Intermolecular Partner to Accelerate EUV Lithography and Advanced Transistor Development: Partnership combines strengths to advance critical lithography technology and to accelerate innovation in the continued scaling of logic applications

Abstract:
n an effort that will accelerate commercialization of extreme ultraviolet (EUV) lithography technology and the development of next-generation transistors, SEMATECH announced today that Intermolecular, Inc. (NASDAQ: IMI) has joined SEMATECH's Lithography and Front End Processes (FEP) programs. The companies have agreed to co-develop new methods to reduce overall cost of ownership (CoO) for Extreme UltraViolet (EUV) lithography, and to co-explore new materials, processes, and integration schemes for advanced logic integrated circuit technologies.

SEMATECH and Intermolecular Partner to Accelerate EUV Lithography and Advanced Transistor Development: Partnership combines strengths to advance critical lithography technology and to accelerate innovation in the continued scaling of logic applications

Albany, NY and San Jose, CA | Posted on April 9th, 2013

"There are technology gaps the industry needs to address to enable cost-effective insertion of EUV lithography at the 22 nm half-pitch," said Stefan Wurm, SEMATECH's director of Lithography. "SEMATECH is pleased to welcome Intermolecular as a partner. We will work together to accelerate the investigation and qualification of chemical formulations needed to establish a production-worthy EUV lithography technology."

Intermolecular's High Productivity Combinatorial (HPC™) platform provides disruptive research and development (R&D) capability that allows for prototyping and characterization of atomic-scale devices at rates 10-100 times faster than can be achieved with conventional approaches. Such methodologies and technologies will be used in both of the program collaborations.

"As semiconductor dimensions are scaled down further, contact resistance remains a critical issue," said Tony Chiang, Chief Technology Officer, Intermolecular. "Our unique capabilities to accelerate R&D across leading-edge semiconductor processes and devices complement SEMATECH's expertise in advanced CMOS test structures and process flows. We are pleased to join in this pre-competitive collaboration intended to accelerate the transfer of new technologies into industry."

Intermolecular's mission is to improve R&D efficiency in the semiconductor and clean energy industries through collaborations that use its HPC platform.

####

About SEMATECH
For over 25 years, SEMATECH®, the international consortium of leading semiconductor device, equipment, and materials manufacturers, has set global direction, enabled flexible collaboration, and bridged strategic R&D to manufacturing. Through our unwavering commitment to foster collaboration across the nanoelectronics industry, we help our members and partners address critical industry transitions, drive technical consensus, pull research into the industry mainstream, improve manufacturing productivity, and reduce risk and time to market. Information about SEMATECH can be found at www.sematech.org. Twitter: www.twitter.com/sematech

About Intermolecular, Inc.

Intermolecular® has pioneered a proprietary approach to accelerate research and development, innovation, and time-to-market for the semiconductor and clean energy industries. The approach consists of its proprietary High Productivity Combinatorial (HPC™) platform, coupled with its multi-disciplinary team. Through paid Collaborative Development Programs (CDPs) with its customers, Intermolecular develops proprietary technology and intellectual property for its customers focused on advanced materials, processes, integration and device architectures. Founded in 2004, Intermolecular is based in San Jose, California. “Intermolecular” and the Intermolecular logo are registered trademarks; and “HPC” is a trademark of Intermolecular, Inc.; all rights reserved. Learn more at www.intermolecular.com.

For more information, please click here

Contacts:
Erica McGill
SEMATECH
Phone: 518-649-1041


David Moreno
MCA Public Relations, for Intermolecular
Phone: 650-968-8900 x125


Investor Relations:
Gary Hsueh
Intermolecular
Phone: 408-582-5635

Copyright © SEMATECH

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Alliances/Trade associations/Partnerships/Distributorships

Manchester graphene spin-out signs $1billion game-changing deal to help tackle global sustainability challenges: Landmark deal for the commercialisation of graphene April 14th, 2023

Chicago Quantum Exchange welcomes six new partners highlighting quantum technology solutions, from Chicago and beyond September 23rd, 2022

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Disposable electronics on a simple sheet of paper October 7th, 2022

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project