Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New diagnostic technology may lead to individualized treatments for prostate cancer: NanoVelcro Chip device captures and isolates potentially high-risk cancer cells

Abstract:
A research team jointly led by scientists from Cedars-Sinai Medical Center and the University of California, Los Angeles, have enhanced a device they developed to identify and "grab" circulating tumor cells, or CTCs, that break away from cancers and enter the blood, often leading to the spread of cancer to other parts of the body.

New diagnostic technology may lead to individualized treatments for prostate cancer: NanoVelcro Chip device captures and isolates potentially high-risk cancer cells

Los Angeles, CA | Posted on April 1st, 2013

If more studies confirm the technology's effectiveness, the NanoVelcro Chip device could enable doctors to access and identify cancerous cells in the bloodstream, which would provide the diagnostic information needed to create individually tailored treatments for patients with prostate cancer.

The researchers believe this technology may function as a "liquid biopsy," revolutionizing conventional biopsy practices and significantly advancing the field of personalized medicine. Today's biopsies require the removal of tissue samples through a needle inserted into a solid tumor, a procedure that is invasive and sometimes painful. Biopsies are extremely difficult in metastatic prostate cancer because the disease often spreads to bone, where the availability of the tissue is low.

The biggest challenges in the treatment of cancer are that every person's tumor differs greatly and often mutates over time, especially in response to treatment. Researchers hope that by analyzing these CTCs, doctors will be able to understand the tumor evolution in each individual. By monitoring the genetic changes in CTCs and their invasiveness in a tissue culture dish, doctors may be able to quickly adjust their treatment plans in response.

"We are optimistic that the use of our NanoVelcro CTC technology will revolutionize prostate cancer treatment. We know that cancers evolve over time and that every patient's cancer is a unique problem — the ‘one-size-fits-all' approach is not going to allow us to cure prostate cancer or any other cancer," said Edwin M. Posadas, MD, medical director of the Urologic Oncology Program at Cedars-Sinai's Samuel Oschin Comprehensive Cancer Institute and senior author of the article in the March online issue of Advanced Materials.

"This evolution means that we need to be able to monitor these changes over time and to ensure a patient's treatment is individualized and optimized. The molecular characterizations of CTCs will provide real-time information allowing us to choose the right treatment for the right patient at the right time. This improvement will be a great step toward developing personalized medicine," he added.

The existence of CTCs and their role in cancer metastasis was first suspected more than 140 years ago, and the first test for the routine measurement of CTCs became available in 2004, but earlier methods have produced low capture efficiencies and limited capability of captured cells to be utilized for later molecular analysis.

"Our technology is the combination of three state-of-the-art technologies: the NanoVelcro CTC chip, laser capture microdissection and whole exome sequencing," said Yi-Tsung Lu, MD, a postdoctoral scientist at the Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, and one of the article's first authors. "This advancement will, in principle, allow us to track the genomic evolution of prostate cancer after we initiate a therapy and will allow us to better understand the mechanism of drug resistance that is common in prostate cancer patients. We hope the comprehensive understanding of cancer biology at the individual level will ultimately lead to better therapy choice for patients suffering from advanced cancer."

With the new system, a patient's blood is pumped through the NanoVelcro Chip — the microvilli protruding from the cancer cells will stick to the nanofiber structures on the device's surface, much like Velcro. This phenomenon facilitates the capture of rare CTCs in the blood stream. Next, laser capture microdissection technology allows the scientists to selectively cut out and pick up the CTCs from the NanoVelcro Chip, virtually eliminating any trace of any contamination from white blood cells, which can complicate analysis. Finally, the isolated and purified CTCs are subjected to single cell "next-generation" sequencing, which reveals mutations in the genetic material of the cells and may help doctors personalize therapies to a patient's unique cancer.

"To date, CTC capture technologies have been able to do little more than count the number of CTCs, which is informative but not very useful from a treatment planning perspective. It is a scientific breakthrough to have the ability to isolate pure CTCs and maintain their integrity for sophisticated genomic and behavioral analyses," said Hsian-Rong Tseng, PhD, associate professor of molecular and medical pharmacology at UCLA and the inventor of the NanoVelcro Chip concept and device. His enthusiasm is echoed by Leland W. K. Chung, PhD, director of the Urologic Oncology Research Program at the Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute.

Researchers from the Chinese Academy of Science, Jonsson Comprehensive Cancer Center at UCLA and VA Greater Los Angeles Healthcare System, Beijing Genomics Institute in China, CytoLumina Technologies Corp. and Fourth Military Medical University in China contributed to the article.

Cedars-Sinai researchers were supported by a Young Investigator Award and a Challenge Award from the Prostate Cancer Foundation, research grants (P01 CA098912 and R01 CA122602) from the National Institutes of Health, a Department of Defense Idea Award (W81XWH-11-1-0422) and from Spielberg Family Foundation. UCLA researchers were supported by a Creativity Award from the Prostate Cancer Foundation and research grants (R21 CA151159 and R33 CA157396) from the National Institutes of Health/National Cancer Institute Innovative Molecular Analysis Technologies (IMAT) Program.

Citation: Advanced Materials, "High-Purity Prostate Circulating Tumor Cell Isolation by a Polymer Nanofiber-Embedded Microchip for Whole Exome Sequencing," March 2013 issue.

####

For more information, please click here

Contacts:
Cara Lasala
Telephone: 1-310-423-7798

Copyright © Cedars-Sinai Medical Center

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

Super sensitive measurement of magnetic fields March 31st, 2015

Nanomedicine pioneer Mauro Ferrari at ETH Zurich March 31st, 2015

Govt.-Legislation/Regulation/Funding/Policy

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

SUNY Poly CNSE and Title Sponsor SEFCU Name Capital Region Teams Advancing to the Final Round of the 2015 New York Business Plan Competition March 30th, 2015

Princess Margaret scientists convert microbubbles to nanoparticles: Harnessing light to advance tumor imaging, provide platform for targeted treatment March 30th, 2015

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Nanomedicine

Nanion Technologies Appoints James Costantin as Director of Customer Relations: Nanion is pleased to announce the appointment of Dr. James Costantin as Director of Customer Relations at Nanion Technologies Inc. March 31st, 2015

Nanomedicine shines light on combined force of nanomedicine and regenerative medicine March 31st, 2015

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

Nanomedicine pioneer Mauro Ferrari at ETH Zurich March 31st, 2015

Discoveries

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

Super sensitive measurement of magnetic fields March 31st, 2015

From tobacco to cyberwood March 31st, 2015

Announcements

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

Super sensitive measurement of magnetic fields March 31st, 2015

Nanomedicine pioneer Mauro Ferrari at ETH Zurich March 31st, 2015

Military

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Thousands of atoms entangled with a single photon: Result could make atomic clocks more accurate March 26th, 2015

Research partnerships

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

'Atomic chicken-wire' is key to faster DNA sequencing March 30th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE