Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > 'Metascreen' forms ultra-thin invisibility cloak

Abstract:
Up until now, the invisibility cloaks put forward by scientists have been fairly bulky contraptions - an obvious flaw for those interested in Harry Potter-style applications.

However, researchers from the US have now developed a cloak that is just micrometres thick and can hide three-dimensional objects from microwaves in their natural environment, in all directions and from all of the observers' positions.

'Metascreen' forms ultra-thin invisibility cloak

London, UK | Posted on March 25th, 2013

Presenting their study today, 26 March, in the Institute of Physics and German Physical Society's New Journal of Physics, the researchers, from the University of Texas at Austin, have used a new, ultrathin layer called a "metascreen".

The metascreen cloak was made by attaching strips of 66 µm-thick copper tape to a 100 µm-thick, flexible polycarbonate film in a fishnet design. It was used to cloak an 18 cm cylindrical rod from microwaves and showed optimal functionality when the microwaves were at a frequency of 3.6 GHz and over a moderately broad bandwidth.

The researchers also predict that due to the inherent conformability of the metascreen and the robustness of the proposed cloaking technique, oddly shaped and asymmetrical objects can be cloaked with the same principles.

Objects are detected when waves - whether they are sound, light, x-rays or microwaves - rebound off its surface. The reason we see objects is because light rays bounce off their surface towards our eyes and our eyes are able to process the information.

Whilst previous cloaking studies have used metamaterials to divert, or bend, the incoming waves around an object, this new method, which the researchers dub "mantle cloaking", uses an ultrathin metallic metascreen to cancel out the waves as they are scattered off the cloaked object.

"When the scattered fields from the cloak and the object interfere, they cancel each other out and the overall effect is transparency and invisibility at all angles of observation," said co-author of the study Professor Andrea Alu.

"The advantages of the mantle cloaking over existing techniques are its conformability, ease of manufacturing and improved bandwidth. We have shown that you don't need a bulk metamaterial to cancel the scattering from an object - a simple patterned surface that is conformal to the object may be sufficient and, in many regards, even better than a bulk metamaterial."

Last year, the same group of researchers were the first to successfully cloak a 3D object in another paper published in New Journal of Physics, using a method called "plasmonic cloaking", which used more bulky materials to cancel out the scattering of waves.

Moving forward, one of the key challenges for the researchers will be to use "mantle cloaking" to hide an object from visible light.

"In principle this technique could also be used to cloak light," continued Professor Alu.

"In fact, metascreens are easier to realize at visible frequencies than bulk metamaterials and this concept could put us closer to a practical realization. However, the size of the objects that can be efficiently cloaked with this method scales with the wavelength of operation, so when applied to optical frequencies we may be able to efficiently stop the scattering of micrometer-sized objects.

"Still, we have envisioned other exciting applications using the mantle cloak and visible light, such as realizing optical nanotags and nanoswitches, and noninvasive sensing devices, which may provide several benefits for biomedical and optical instrumentation."

####

About Institute of Physics (IOP)
The Institute of Physics is a leading scientific society promoting physics and bringing physicists together for the benefit of all.

It has a worldwide membership of around 40 000 comprising physicists from all sectors, as well as those with an interest in physics. It works to advance physics research, application and education; and engages with policy makers and the public to develop awareness and understanding of physics. Its publishing company, IOP Publishing, is a world leader in professional scientific communications. Go to www.iop.org

About New Journal of Physics

New Journal of Physics publishes across the whole of physics, encompassing pure, applied, theoretical and experimental research, as well as interdisciplinary topics where physics forms the central theme. All content is permanently free to read and the journal is funded by an article publication charge.

About IOP Publishing

IOP Publishing provides publications through which leading-edge scientific research is distributed worldwide. IOP Publishing is central to the Institute of Physics (IOP), a not-for-profit society. Any financial surplus earned by IOP Publishing goes to support science through the activities of IOP. Beyond our traditional journals programme, we make high-value scientific information easily accessible through an ever-evolving portfolio of community websites, magazines, conference proceedings and a multitude of electronic services. Focused on making the most of new technologies, we’re continually improving our electronic interfaces to make it easier for researchers to find exactly what they need, when they need it, in the format that suits them best. Go to ioppublishing.org

About The German Physical Society

The German Physical Society (DPG) with a tradition extending back to 1845 is the largest physical society in the world with more than 59,000 members. The DPG sees itself as the forum and mouthpiece for physics and is a non-profit organisation that does not pursue financial interests. It supports the sharing of ideas and thoughts within the scientific community, fosters physics teaching and would also like to open a window to physics for all those with a healthy curiosity.

For more information, please click here

Contacts:
Michael Bishop
+44 (0) 1179 301032

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full bibliographic information - The published version of the paper “Demonstration of an ultra-low profile cloak for scattering suppression of a finite-length rod in free space” (J C Soric et al 2013 New J. Phys. 15 033037) will be freely available online from Tuesday 26 March. It will be available at

Related News Press

News and information

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

An Archimedes' screw for groups of quantum particles November 19th, 2016

Trickling electrons: Close to absolute zero, the particles exhibit their quantum nature November 10th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Sensors

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Tip-assisted chemistry enables chemical reactions at femtoliter scale November 16th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Engineers develop new magnetic ink to print self-healing devices that heal in record time November 7th, 2016

Discoveries

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Materials/Metamaterials

Inside tiny tubes, water turns solid when it should be boiling: MIT researchers discover astonishing behavior of water confined in carbon nanotubes November 30th, 2016

From champagne bubbles, dance parties and disease to new nanomaterials: Understanding nucleation of protein filaments might help with Alzheimer's Disease and type 2 Diabetes November 24th, 2016

Uncovering the secrets of friction on graphene: Sliding on flexible graphene surfaces has been uncharted territory until now November 23rd, 2016

2-D material a brittle surprise: Rice University researchers finds molybdenum diselenide not as strong as they thought November 14th, 2016

Announcements

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Military

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

New method for analyzing crystal structure: Exotic materials called photonic crystals reveal their internal characteristics with new method November 30th, 2016

Inside tiny tubes, water turns solid when it should be boiling: MIT researchers discover astonishing behavior of water confined in carbon nanotubes November 30th, 2016

Photonics/Optics/Lasers

Controlled electron pulses November 30th, 2016

New method for analyzing crystal structure: Exotic materials called photonic crystals reveal their internal characteristics with new method November 30th, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

Single photon converter -- a key component of quantum internet November 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project