Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > 'Metascreen' forms ultra-thin invisibility cloak

Abstract:
Up until now, the invisibility cloaks put forward by scientists have been fairly bulky contraptions - an obvious flaw for those interested in Harry Potter-style applications.

However, researchers from the US have now developed a cloak that is just micrometres thick and can hide three-dimensional objects from microwaves in their natural environment, in all directions and from all of the observers' positions.

'Metascreen' forms ultra-thin invisibility cloak

London, UK | Posted on March 25th, 2013

Presenting their study today, 26 March, in the Institute of Physics and German Physical Society's New Journal of Physics, the researchers, from the University of Texas at Austin, have used a new, ultrathin layer called a "metascreen".

The metascreen cloak was made by attaching strips of 66 µm-thick copper tape to a 100 µm-thick, flexible polycarbonate film in a fishnet design. It was used to cloak an 18 cm cylindrical rod from microwaves and showed optimal functionality when the microwaves were at a frequency of 3.6 GHz and over a moderately broad bandwidth.

The researchers also predict that due to the inherent conformability of the metascreen and the robustness of the proposed cloaking technique, oddly shaped and asymmetrical objects can be cloaked with the same principles.

Objects are detected when waves - whether they are sound, light, x-rays or microwaves - rebound off its surface. The reason we see objects is because light rays bounce off their surface towards our eyes and our eyes are able to process the information.

Whilst previous cloaking studies have used metamaterials to divert, or bend, the incoming waves around an object, this new method, which the researchers dub "mantle cloaking", uses an ultrathin metallic metascreen to cancel out the waves as they are scattered off the cloaked object.

"When the scattered fields from the cloak and the object interfere, they cancel each other out and the overall effect is transparency and invisibility at all angles of observation," said co-author of the study Professor Andrea Alu.

"The advantages of the mantle cloaking over existing techniques are its conformability, ease of manufacturing and improved bandwidth. We have shown that you don't need a bulk metamaterial to cancel the scattering from an object - a simple patterned surface that is conformal to the object may be sufficient and, in many regards, even better than a bulk metamaterial."

Last year, the same group of researchers were the first to successfully cloak a 3D object in another paper published in New Journal of Physics, using a method called "plasmonic cloaking", which used more bulky materials to cancel out the scattering of waves.

Moving forward, one of the key challenges for the researchers will be to use "mantle cloaking" to hide an object from visible light.

"In principle this technique could also be used to cloak light," continued Professor Alu.

"In fact, metascreens are easier to realize at visible frequencies than bulk metamaterials and this concept could put us closer to a practical realization. However, the size of the objects that can be efficiently cloaked with this method scales with the wavelength of operation, so when applied to optical frequencies we may be able to efficiently stop the scattering of micrometer-sized objects.

"Still, we have envisioned other exciting applications using the mantle cloak and visible light, such as realizing optical nanotags and nanoswitches, and noninvasive sensing devices, which may provide several benefits for biomedical and optical instrumentation."

####

About Institute of Physics (IOP)
The Institute of Physics is a leading scientific society promoting physics and bringing physicists together for the benefit of all.

It has a worldwide membership of around 40 000 comprising physicists from all sectors, as well as those with an interest in physics. It works to advance physics research, application and education; and engages with policy makers and the public to develop awareness and understanding of physics. Its publishing company, IOP Publishing, is a world leader in professional scientific communications. Go to www.iop.org

About New Journal of Physics

New Journal of Physics publishes across the whole of physics, encompassing pure, applied, theoretical and experimental research, as well as interdisciplinary topics where physics forms the central theme. All content is permanently free to read and the journal is funded by an article publication charge.

About IOP Publishing

IOP Publishing provides publications through which leading-edge scientific research is distributed worldwide. IOP Publishing is central to the Institute of Physics (IOP), a not-for-profit society. Any financial surplus earned by IOP Publishing goes to support science through the activities of IOP. Beyond our traditional journals programme, we make high-value scientific information easily accessible through an ever-evolving portfolio of community websites, magazines, conference proceedings and a multitude of electronic services. Focused on making the most of new technologies, we’re continually improving our electronic interfaces to make it easier for researchers to find exactly what they need, when they need it, in the format that suits them best. Go to ioppublishing.org

About The German Physical Society

The German Physical Society (DPG) with a tradition extending back to 1845 is the largest physical society in the world with more than 59,000 members. The DPG sees itself as the forum and mouthpiece for physics and is a non-profit organisation that does not pursue financial interests. It supports the sharing of ideas and thoughts within the scientific community, fosters physics teaching and would also like to open a window to physics for all those with a healthy curiosity.

For more information, please click here

Contacts:
Michael Bishop
+44 (0) 1179 301032

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full bibliographic information - The published version of the paper “Demonstration of an ultra-low profile cloak for scattering suppression of a finite-length rod in free space” (J C Soric et al 2013 New J. Phys. 15 033037) will be freely available online from Tuesday 26 March. It will be available at

Related News Press

News and information

Scientists develop promising vaccine method against recurrent UTI November 19th, 2021

How ultracold, superdense atoms become invisible: A new study confirms that as atoms are chilled and squeezed to extremes, their ability to scatter light is suppressed November 19th, 2021

New microscopy method offers 3D tracking of 100 single molecules at once November 19th, 2021

Two is better than one: Single-atom dimer electrocatalyst for green hydrogen production: Nickel-cobalt metal dimer on nitrogen-doped carbon can catalyze electrolysis under both acidic and basic conditions November 19th, 2021

Physics

Scientists discover spin polarization induced by shear flow October 1st, 2021

Switching on a superfluid: Exotic phase transitions unlock pathways to future, superfluid-based technologies September 24th, 2021

Ultrasound at the nanometre scale reveals the nature of force September 17th, 2021

Ultrafast & ultrathin: new physics professor at TU Dresden makes mysterious quantum world visible September 10th, 2021

Govt.-Legislation/Regulation/Funding/Policy

Scientists develop promising vaccine method against recurrent UTI November 19th, 2021

How ultracold, superdense atoms become invisible: A new study confirms that as atoms are chilled and squeezed to extremes, their ability to scatter light is suppressed November 19th, 2021

Energizer atoms: JILA researchers find new way to keep atoms excited November 19th, 2021

Cancer cells use ‘tiny tentacles’ to suppress the immune system: With the power of nanotechnology, investigators have discovered that cancer cells strengthen by forming nanotubes that they use to suck mitochondria out of immune cells November 19th, 2021

Sensors

Quantum brain sensors could be crucial in spotting dementia after University of Sussex scientists find they can track brain waves: Sensors introduce important new method to spot bio-marker for brain diseases • Accurate timings of when brain signals fire demonstrated for first tim November 19th, 2021

New microscopy method offers 3D tracking of 100 single molecules at once November 19th, 2021

How to program DNA robots to poke and prod cell membranes: A discovery of how to build little blocks out of DNA and get them to stick to lipids has implications for biosensing and mRNA vaccines October 15th, 2021

Leibniz Prize winner Professor Dr. Oliver G. Schmidt moves to Chemnitz University of Technology: President Professor Dr. Gerd Strohmeier refers to an 'absolute top transfer' September 10th, 2021

Discoveries

Developing high-performance MXene electrodes for next-generation powerful battery November 19th, 2021

Efficient photon upconversion at an organic semiconductor interface November 19th, 2021

Quantum brain sensors could be crucial in spotting dementia after University of Sussex scientists find they can track brain waves: Sensors introduce important new method to spot bio-marker for brain diseases • Accurate timings of when brain signals fire demonstrated for first tim November 19th, 2021

New microscopy method offers 3D tracking of 100 single molecules at once November 19th, 2021

Materials/Metamaterials

An artificial material that can sense, adapt to its environment: University of Missouri engineers are collaborating with researchers at University of Chicago to design the material November 5th, 2021

UTA project aims to extend life of concrete, cement by adding nanoscale wood fibers: Wood fibers key to sustainable concrete, cement September 24th, 2021

Nanocellulose decorated with proteins is suitable for 3D cell culturing September 24th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Announcements

Efficient photon upconversion at an organic semiconductor interface November 19th, 2021

Quantum brain sensors could be crucial in spotting dementia after University of Sussex scientists find they can track brain waves: Sensors introduce important new method to spot bio-marker for brain diseases • Accurate timings of when brain signals fire demonstrated for first tim November 19th, 2021

New microscopy method offers 3D tracking of 100 single molecules at once November 19th, 2021

Two is better than one: Single-atom dimer electrocatalyst for green hydrogen production: Nickel-cobalt metal dimer on nitrogen-doped carbon can catalyze electrolysis under both acidic and basic conditions November 19th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Scientists develop promising vaccine method against recurrent UTI November 19th, 2021

How ultracold, superdense atoms become invisible: A new study confirms that as atoms are chilled and squeezed to extremes, their ability to scatter light is suppressed November 19th, 2021

Energizer atoms: JILA researchers find new way to keep atoms excited November 19th, 2021

Developing high-performance MXene electrodes for next-generation powerful battery November 19th, 2021

Military

Energizer atoms: JILA researchers find new way to keep atoms excited November 19th, 2021

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

An artificial material that can sense, adapt to its environment: University of Missouri engineers are collaborating with researchers at University of Chicago to design the material November 5th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Photonics/Optics/Lasers

Efficient photon upconversion at an organic semiconductor interface November 19th, 2021

Visualizing temperature transport: An unexpected technique for nanoscale characterization November 19th, 2021

Photon-pair source with pump rejection filter fabricated on single CMOS chip: New integrated source provides critical component for chip-based quantum photonic systems October 15th, 2021

Ultrafast magnetism: heating magnets, freezing time: This study on Gadolinium is completing a series of experiments on Nickel, Iron-Nickel Alloys: The results are useful for developing ultrafast data storage devices October 15th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project