Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UEA researchers make breakthrough in race to create ‘bio-batteries’

Shewanella oneidensis bacteriaAlice Dohnalkova
Shewanella oneidensis bacteria

Alice Dohnalkova

Abstract:
Scientists at the University of East Anglia have made an important breakthrough in the quest to generate clean electricity from bacteria.

Findings published today in the journal Proceedings of the National Academy of Sciences (PNAS) show that proteins on the surface of bacteria can produce an electric current by simply touching a mineral surface.

UEA researchers make breakthrough in race to create ‘bio-batteries’

Norwich, UK | Posted on March 25th, 2013

The research shows that it is possible for bacteria to lie directly on the surface of a metal or mineral and transfer electrical charge through their cell membranes. This means that it is possible to ‘tether' bacteria directly to electrodes - bringing scientists a step closer to creating efficient microbial fuel cells or ‘bio-batteries'.

The team collaborated with researchers at Pacific Northwest National Laboratory in Washington State in the US. The project was funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and the US Department of Energy.

Shewanella oneidensis is part of a family of marine bacteria. The research team created a synthetic version of this bacteria using just the proteins thought to shuttle the electrons from the inside of the microbe to the rock.

They inserted these proteins into the lipid layers of vesicles, which are small capsules of lipid membranes such as the ones that make up a bacterial membrane. Then they tested how well electrons travelled between an electron donor on the inside and an iron-bearing mineral on the outside.

Lead researcher Dr Tom Clarke from UEA's school of Biological Sciences said: "We knew that bacteria can transfer electricity into metals and minerals, and that the interaction depends on special proteins on the surface of the bacteria. But it was not been clear whether these proteins do this directly or indirectly though an unknown mediator in the environment.

"Our research shows that these proteins can directly 'touch' the mineral surface and produce an electric current, meaning that is possible for the bacteria to lie on the surface of a metal or mineral and conduct electricity through their cell membranes.

"This is the first time that we have been able to actually look at how the components of a bacterial cell membrane are able to interact with different substances, and understand how differences in metal and mineral interactions can occur on the surface of a cell.

"These bacteria show great potential as microbial fuel cells, where electricity can be generated from the breakdown of domestic or agricultural waste products.

"Another possibility is to use these bacteria as miniature factories on the surface of an electrode, where chemicals reactions take place inside the cell using electrical power supplied by the electrode through these proteins."

Biochemist Liang Shi of Pacific Northwest National Laboratory said: "We developed a unique system so we could mimic electron transfer like it happens in cells. The electron transfer rate we measured was unbelievably fast - it was fast enough to support bacterial respiration."

The finding is also important for understanding how carbon works its way through the atmosphere, land and oceans.

"When organic matter is involved in reducing iron, it releases carbon dioxide and water. And when iron is used as an energy source, bacteria incorporate carbon dioxide into food. If we understand electron transfer, we can learn how bacteria controls the carbon cycle," said Shi.

Full bibliographic information

‘Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals' by Thomas A Clarke, Gaye White, Julea N Butt, and David J Richardson (all UEA, UK), and Zhri Shi, Liang Shi, Zheming Wang, Alice C Dohnalkova, Matthew J Marshall, James K Fredrickson and John M Zachara (all PNNL, USA) is published by the Proceedings of the National Academy of Sciences (PNAS) on Monday, March 25, 2013.

####

About University of East Anglia
The University of East Anglia (UEA) was founded in 1963 and this year celebrates its 50th anniversary. It has played a significant role in advancing human understanding and in 2012 the Times Higher Education ranked UEA as one of the 10 best universities in the world under 50 years of age. The university has graduated more than 100,000 students, attracted to Norwich Research Park some of Britain’s key research institutes and a major University Hospital, and made a powerful cultural, social and economic impact on the region.
www.uea.ac.uk/50years

About UEA’s School of Biological Sciences

UEA’s School of Biological Sciences is ranked 14th in the Guardian League Table 2013 and 90 per cent of research activity was classified as internationally leading, excellent or recognised in the latest Research Assessment Exercise. The school was ranked first for teaching in the 2012 National Student Survey.
www.uea.ac.uk/bio

About Pacific Northwest National Laboratory

Interdisciplinary teams at Pacific Northwest National Laboratory address many of America's most pressing issues in energy, the environment and national security through advances in basic and applied science. PNNL employs 4,500 staff, has an annual budget of nearly $1 billion, and has been managed for the U.S. Department of Energy by Ohio-based Battelle since the laboratory's inception in 1965. For more information, visit the PNNL News Center, or follow PNNL on Facebook, LinkedIn and Twitter.

About BBSRC

BBSRC invests in world-class bioscience research and training on behalf of the UK public. Its aim is to further scientific knowledge, to promote economic growth, wealth and job creation and to improve quality of life in the UK and beyond.
Funded by Government, and with an annual budget of around £500M (2012-2013), it supports research and training in universities and strategically funded institutes. BBSRC research and the people it funds are helping society to meet major challenges, including food security, green energy and healthier, longer lives. Its investments underpin important UK economic sectors, such as farming, food, industrial biotechnology and pharmaceuticals.

For more information about BBSRC, science and impact see: www.bbsrc.ac.uk.
For more information about BBSRC strategically funded institutes see: www.bbsrc.ac.uk/institutes.

For more information, please click here

Contacts:
Lisa Horton
University of East Anglia
Press Office
+44 (0)1603 592764

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nature paper by Schlumberger researchers used photothermal based nanoscale IR spectroscopy to analyze heterogeneous process of petroleum generation January 23rd, 2018

New filters could enable manufacturers to perform highly-selective chemical separation January 23rd, 2018

Researchers use sound waves to advance optical communication January 22nd, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Laboratories

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

Laboratory Management Web Application Goes Nationwide January 9th, 2018

NRL improves optical efficiency in nanophotonic devices January 4th, 2018

Tweaking quantum dots powers-up double-pane solar windows: Engineered quantum dots could bring down the cost of solar electricity January 2nd, 2018

Govt.-Legislation/Regulation/Funding/Policy

New filters could enable manufacturers to perform highly-selective chemical separation January 23rd, 2018

Researchers use sound waves to advance optical communication January 22nd, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

Discoveries

Nature paper by Schlumberger researchers used photothermal based nanoscale IR spectroscopy to analyze heterogeneous process of petroleum generation January 23rd, 2018

Researchers use sound waves to advance optical communication January 22nd, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Thanks for the memory: NIST takes a deep look at memristors January 20th, 2018

Announcements

Nature paper by Schlumberger researchers used photothermal based nanoscale IR spectroscopy to analyze heterogeneous process of petroleum generation January 23rd, 2018

New filters could enable manufacturers to perform highly-selective chemical separation January 23rd, 2018

Researchers use sound waves to advance optical communication January 22nd, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

Novel MOF shell-derived surface modification of Li-rich layered oxide cathode December 29th, 2017

Paving the way for a non-electric battery to store solar energy: UMass Amherst scientists say a polymer chain organized like a string of Christmas lights assists energy storage December 22nd, 2017

Sandia researchers make solid ground toward better lithium-ion battery interfaces: Reducing the traffic jam in batteries December 13th, 2017

Nanobiotechnology

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Research partnerships

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

New catalyst for hydrogen production is a step toward clean fuel: Carbon-based nanocomposite with embedded metal ions yields impressive performance as catalyst for electrolysis of water to generate hydrogen January 16th, 2018

New era in high field superconducting magnets – opening new frontiers in science, nanotechnology and materials discovery January 9th, 2018

Touchy nanotubes work better when clean: Rice, Swansea scientists show that decontaminating nanotubes can simplify nanoscale devices January 4th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project