Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Magnets are chaotic – and fast – at the very smallest scale

Abstract:
Using a new type of camera that makes extremely fast snapshots with an extremely high resolution, it is now possible to observe the behaviour of magnetic materials at the nanoscale. This behaviour is more chaotic than previously thought, as reported in Nature Materials on 17 March. The observed behaviour changes our understanding of data storage, says Theo Rasing, one of the authors of the article.

Magnets are chaotic – and fast – at the very smallest scale

Netherlands | Posted on March 18th, 2013

Surprisingly, it would seem that the chaotic behaviour of the magnetic material is highly significant as far as the transport of magnetic information at the smallest possible scale is concerned. This is the result of research carried out by Theo Rasing's group at Radboud University Nijmegen, with colleagues from Stanford, Berlin and Tokyo. Use was made of a very special measuring instrument - the Linac Coherent Light Source (LCLS) - a unique X-ray laser at SLAC National Accelerator Laboratory. Essentially, this X-ray laser is like a camera with both an extremely short shutter time of 100 femtoseconds (one tenth of a trillionth of a second) and an extremely high spatial resolution of a few nanometers (one billionth of a meter). The measurements show that the magnetic material behaves completely different at the nanoscale than at the macroscale.

Nanoscale spin transport

Seen at the atomic scale, all magnets are made up of lots of small magnets, called spins. Magnetic switching for data storage involves reversing the magnetisation direction of the spins: a north pole becomes a south pole, and vice versa. The magnetic material in question contained two spin types from two different elements: iron (Fe) and gadolinium (Gd). The researchers observed that, at the nanoscale, the spins were unevenly distributed: there were areas with a higher than average amount of Fe and areas with a higher than average amount of Gd - hence chaotic magnets.

It appears that magnetic switching starts with the ultrafast transport (~10nm/300fs) of spins between the Fe areas and the Gd areas, after which collisions result in the reversal. Such an ultrafast transfer of spin information has not yet been observed at such a small scale.

Future: smaller is faster

These results make it possible to develop ultrafast nanomagnets in the future in which spin transfer is further optimised through nanostructuring. This will open up pathways for even smaller and faster magnetic data storage.

Full bibliographic informationC.E. Graves, A.H. Reid, T. Wang, B. Wu, S. de Jong, K. Vahaplar, I. Radu, D.P. Bernstein, M. Messerschmidt, L. Müller5, R. Coffee, M. Bionta, S.W. Epp, R. Hartmann, N. Kimmel, G. Hauser, A. Hartmann, P. Holl7, H. Gorke, J. H. Mentink, A. Tsukamoto, A. Fognini, J.J. Turner, W.F. Schlotter, D. Rolles, H. Soltau, L. Strüder, Y. Acremann11, A.V. Kimel, A. Kirilyuk, Th. Rasing, J. Stöhr, A.O. Scherz, H.A. Dürr, Nanoscale spin reversal by nonlocal angular momentum transfer following ultrafast laser excitation in ferrimagnetic GdFeCo, Nature Material, online 17 March 2013. DOI 10.1038/NMAT3597.

Author affiliations:

C.E. Graves1,2+, A.H. Reid1,3+, T. Wang1,4, B. Wu1,2, S. de Jong1, K. Vahaplar3, I. Radu3, D.P.
Bernstein1,2, M. Messerschmidt1, L. Müller5, R. Coffee1, M. Bionta1, S.W. Epp6, R. Hartmann7,
N. Kimmel8, G. Hauser8, A. Hartmann7, P. Holl7, H. Gorke9, J. H. Mentink3, A. Tsukamoto10, A.
Fognini11, J.J. Turner1, W.F. Schlotter1, D. Rolles6, H. Soltau7, L. Strüder8, Y. Acremann11, A.V.
Kimel3, A. Kirilyuk3, Th. Rasing3, J. Stöhr1, A.O. Scherz1, H.A. Dürr1*

1 SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park CA 94025, USA, 2
Department of Applied Physics, Stanford University, Stanford, CA 94305, USA, 3 Radboud
University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ
Nijmegen, The Netherlands, 4 Department of Materials Science and Engineering, Stanford
University, Stanford, CA 94305, USA, 5 DESY Notkestr. 85, 22607 Hamburg, Germany, 6
Advanced Study Group at CFEL, Notkestr. 85, 22607 Hamburg, Germany, 7 PNSensor, Otto-
Hahn-Ring 6, 81739 München, Germany, 8 Max Planck Institute for Extraterrestrial Physics,
Giessenbachstr., 85741 Garching, Germany, 9 Institute ZEL, Research Center Jülich, 52425
Jülich, Germany, 10 Dept. of Electronics & Computer Science, Nihon University, 7-24-1
Narashino-dai Funabashi, Chiba 274-8501, Japan, 11 ETH Zürich, Laboratory for Solid State
Physics, 8093 Zürich, Switzerland
+ Authors contributed equally
* Corresponding author: email

####

For more information, please click here

Contacts:
Theo/Herman Rasing Dürr
Radboud University
SLAC Stanford
00312436553102

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Imaging

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

GLOBALFOUNDRIES Launches 7nm ASIC Platform for Data Center, Machine Learning, and 5G Networks FX-7TM offering leverages the company’s 7nm: FinFET process to deliver best in class IP and Solutions June 13th, 2017

The Zeiss Global Centre in the School of Engineering at the University of Portsmouth uses Deben µXCT stages to characterise the structural competence of biological structures June 13th, 2017

Memory Technology

New prospects for universal memory -- high speed of RAM and the capacity of flash: Thin films created at MIPT could be the basis for future development of ReRAM June 17th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

New ultrafast flexible and transparent memory devices could herald new era of electronics April 1st, 2017

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

Discoveries

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Announcements

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tools

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

Changing the color of laser light on the femtosecond time scale: How BiCoO3 achieves second harmonic generation June 14th, 2017

Leti Announces Two New Tools for Improving Transportation Comfort, Safety and Efficiency: Wearable Device Measures Stress Responses for Travelers, Pilots and Truck Drivers, While Smartphone App Provides Transit Agencies Broad Data on Transport Modes June 13th, 2017

Research partnerships

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project