Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Magnets are chaotic – and fast – at the very smallest scale

Abstract:
Using a new type of camera that makes extremely fast snapshots with an extremely high resolution, it is now possible to observe the behaviour of magnetic materials at the nanoscale. This behaviour is more chaotic than previously thought, as reported in Nature Materials on 17 March. The observed behaviour changes our understanding of data storage, says Theo Rasing, one of the authors of the article.

Magnets are chaotic – and fast – at the very smallest scale

Netherlands | Posted on March 18th, 2013

Surprisingly, it would seem that the chaotic behaviour of the magnetic material is highly significant as far as the transport of magnetic information at the smallest possible scale is concerned. This is the result of research carried out by Theo Rasing's group at Radboud University Nijmegen, with colleagues from Stanford, Berlin and Tokyo. Use was made of a very special measuring instrument - the Linac Coherent Light Source (LCLS) - a unique X-ray laser at SLAC National Accelerator Laboratory. Essentially, this X-ray laser is like a camera with both an extremely short shutter time of 100 femtoseconds (one tenth of a trillionth of a second) and an extremely high spatial resolution of a few nanometers (one billionth of a meter). The measurements show that the magnetic material behaves completely different at the nanoscale than at the macroscale.

Nanoscale spin transport

Seen at the atomic scale, all magnets are made up of lots of small magnets, called spins. Magnetic switching for data storage involves reversing the magnetisation direction of the spins: a north pole becomes a south pole, and vice versa. The magnetic material in question contained two spin types from two different elements: iron (Fe) and gadolinium (Gd). The researchers observed that, at the nanoscale, the spins were unevenly distributed: there were areas with a higher than average amount of Fe and areas with a higher than average amount of Gd - hence chaotic magnets.

It appears that magnetic switching starts with the ultrafast transport (~10nm/300fs) of spins between the Fe areas and the Gd areas, after which collisions result in the reversal. Such an ultrafast transfer of spin information has not yet been observed at such a small scale.

Future: smaller is faster

These results make it possible to develop ultrafast nanomagnets in the future in which spin transfer is further optimised through nanostructuring. This will open up pathways for even smaller and faster magnetic data storage.

Full bibliographic informationC.E. Graves, A.H. Reid, T. Wang, B. Wu, S. de Jong, K. Vahaplar, I. Radu, D.P. Bernstein, M. Messerschmidt, L. Müller5, R. Coffee, M. Bionta, S.W. Epp, R. Hartmann, N. Kimmel, G. Hauser, A. Hartmann, P. Holl7, H. Gorke, J. H. Mentink, A. Tsukamoto, A. Fognini, J.J. Turner, W.F. Schlotter, D. Rolles, H. Soltau, L. Strüder, Y. Acremann11, A.V. Kimel, A. Kirilyuk, Th. Rasing, J. Stöhr, A.O. Scherz, H.A. Dürr, Nanoscale spin reversal by nonlocal angular momentum transfer following ultrafast laser excitation in ferrimagnetic GdFeCo, Nature Material, online 17 March 2013. DOI 10.1038/NMAT3597.

Author affiliations:

C.E. Graves1,2+, A.H. Reid1,3+, T. Wang1,4, B. Wu1,2, S. de Jong1, K. Vahaplar3, I. Radu3, D.P.
Bernstein1,2, M. Messerschmidt1, L. Müller5, R. Coffee1, M. Bionta1, S.W. Epp6, R. Hartmann7,
N. Kimmel8, G. Hauser8, A. Hartmann7, P. Holl7, H. Gorke9, J. H. Mentink3, A. Tsukamoto10, A.
Fognini11, J.J. Turner1, W.F. Schlotter1, D. Rolles6, H. Soltau7, L. Strüder8, Y. Acremann11, A.V.
Kimel3, A. Kirilyuk3, Th. Rasing3, J. Stöhr1, A.O. Scherz1, H.A. Dürr1*

1 SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park CA 94025, USA, 2
Department of Applied Physics, Stanford University, Stanford, CA 94305, USA, 3 Radboud
University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ
Nijmegen, The Netherlands, 4 Department of Materials Science and Engineering, Stanford
University, Stanford, CA 94305, USA, 5 DESY Notkestr. 85, 22607 Hamburg, Germany, 6
Advanced Study Group at CFEL, Notkestr. 85, 22607 Hamburg, Germany, 7 PNSensor, Otto-
Hahn-Ring 6, 81739 München, Germany, 8 Max Planck Institute for Extraterrestrial Physics,
Giessenbachstr., 85741 Garching, Germany, 9 Institute ZEL, Research Center Jülich, 52425
Jülich, Germany, 10 Dept. of Electronics & Computer Science, Nihon University, 7-24-1
Narashino-dai Funabashi, Chiba 274-8501, Japan, 11 ETH Zürich, Laboratory for Solid State
Physics, 8093 Zürich, Switzerland
+ Authors contributed equally
* Corresponding author: email

####

For more information, please click here

Contacts:
Theo/Herman Rasing Dürr
Radboud University
SLAC Stanford
00312436553102

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

As You Sow’s Shareholder Inquiry on Nanomaterials Fought by Walgreens: Shareholder Proposal Addresses Recent Laboratory Tests Finding Harmful Nanomaterials in Walgreens’ Store Brand Infant Formula September 21st, 2016

Imaging

Oxford Instruments is ‘Bringing the Nanoworld Together’ in India once again - 22 - 23 November 2016 | IISc Bangalore September 21st, 2016

Bruker Introduces Complete Commercial AFM-Based SECM Solution: PeakForce SECM Mode Enables Previously Unobtainable Electrochemical Information September 20th, 2016

Memory Technology

Making the switch, this time with an insulator: Colorado State University physicists, joining the fundamental pursuit of using electron spins to store and manipulate information, have demonstrated a new approach to doing so, which could prove useful in the application of low-powe September 2nd, 2016

Diamonds and quantum information processing on the nano scale August 31st, 2016

Magnetic atoms arranged in neat rows: FAU physicists enable one-dimensional atom chains to grow August 5th, 2016

New metamaterials can change properties with a flick of a light-switch: Material can lead to new optical devices August 3rd, 2016

Discoveries

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Speedy bacteria detector could help prevent foodborne illnesses September 21st, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Announcements

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Tools

Oxford Instruments is ‘Bringing the Nanoworld Together’ in India once again - 22 - 23 November 2016 | IISc Bangalore September 21st, 2016

Bruker Introduces Complete Commercial AFM-Based SECM Solution: PeakForce SECM Mode Enables Previously Unobtainable Electrochemical Information September 20th, 2016

Oxford Instruments Asylum Research Announces New SurfRider Econo Board Probes for Routine AFM Measurements September 19th, 2016

Electron beam microscope directly writes nanoscale features in liquid with metal ink September 16th, 2016

Research partnerships

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Graphene nanoribbons show promise for healing spinal injuries: Rice University scientists develop Texas-PEG to help knit severed, damaged spinal cords September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic