Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Magnets are chaotic – and fast – at the very smallest scale

Abstract:
Using a new type of camera that makes extremely fast snapshots with an extremely high resolution, it is now possible to observe the behaviour of magnetic materials at the nanoscale. This behaviour is more chaotic than previously thought, as reported in Nature Materials on 17 March. The observed behaviour changes our understanding of data storage, says Theo Rasing, one of the authors of the article.

Magnets are chaotic – and fast – at the very smallest scale

Netherlands | Posted on March 18th, 2013

Surprisingly, it would seem that the chaotic behaviour of the magnetic material is highly significant as far as the transport of magnetic information at the smallest possible scale is concerned. This is the result of research carried out by Theo Rasing's group at Radboud University Nijmegen, with colleagues from Stanford, Berlin and Tokyo. Use was made of a very special measuring instrument - the Linac Coherent Light Source (LCLS) - a unique X-ray laser at SLAC National Accelerator Laboratory. Essentially, this X-ray laser is like a camera with both an extremely short shutter time of 100 femtoseconds (one tenth of a trillionth of a second) and an extremely high spatial resolution of a few nanometers (one billionth of a meter). The measurements show that the magnetic material behaves completely different at the nanoscale than at the macroscale.

Nanoscale spin transport

Seen at the atomic scale, all magnets are made up of lots of small magnets, called spins. Magnetic switching for data storage involves reversing the magnetisation direction of the spins: a north pole becomes a south pole, and vice versa. The magnetic material in question contained two spin types from two different elements: iron (Fe) and gadolinium (Gd). The researchers observed that, at the nanoscale, the spins were unevenly distributed: there were areas with a higher than average amount of Fe and areas with a higher than average amount of Gd - hence chaotic magnets.

It appears that magnetic switching starts with the ultrafast transport (~10nm/300fs) of spins between the Fe areas and the Gd areas, after which collisions result in the reversal. Such an ultrafast transfer of spin information has not yet been observed at such a small scale.

Future: smaller is faster

These results make it possible to develop ultrafast nanomagnets in the future in which spin transfer is further optimised through nanostructuring. This will open up pathways for even smaller and faster magnetic data storage.

Full bibliographic informationC.E. Graves, A.H. Reid, T. Wang, B. Wu, S. de Jong, K. Vahaplar, I. Radu, D.P. Bernstein, M. Messerschmidt, L. Müller5, R. Coffee, M. Bionta, S.W. Epp, R. Hartmann, N. Kimmel, G. Hauser, A. Hartmann, P. Holl7, H. Gorke, J. H. Mentink, A. Tsukamoto, A. Fognini, J.J. Turner, W.F. Schlotter, D. Rolles, H. Soltau, L. Strüder, Y. Acremann11, A.V. Kimel, A. Kirilyuk, Th. Rasing, J. Stöhr, A.O. Scherz, H.A. Dürr, Nanoscale spin reversal by nonlocal angular momentum transfer following ultrafast laser excitation in ferrimagnetic GdFeCo, Nature Material, online 17 March 2013. DOI 10.1038/NMAT3597.

Author affiliations:

C.E. Graves1,2+, A.H. Reid1,3+, T. Wang1,4, B. Wu1,2, S. de Jong1, K. Vahaplar3, I. Radu3, D.P.
Bernstein1,2, M. Messerschmidt1, L. Müller5, R. Coffee1, M. Bionta1, S.W. Epp6, R. Hartmann7,
N. Kimmel8, G. Hauser8, A. Hartmann7, P. Holl7, H. Gorke9, J. H. Mentink3, A. Tsukamoto10, A.
Fognini11, J.J. Turner1, W.F. Schlotter1, D. Rolles6, H. Soltau7, L. Strüder8, Y. Acremann11, A.V.
Kimel3, A. Kirilyuk3, Th. Rasing3, J. Stöhr1, A.O. Scherz1, H.A. Dürr1*

1 SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park CA 94025, USA, 2
Department of Applied Physics, Stanford University, Stanford, CA 94305, USA, 3 Radboud
University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ
Nijmegen, The Netherlands, 4 Department of Materials Science and Engineering, Stanford
University, Stanford, CA 94305, USA, 5 DESY Notkestr. 85, 22607 Hamburg, Germany, 6
Advanced Study Group at CFEL, Notkestr. 85, 22607 Hamburg, Germany, 7 PNSensor, Otto-
Hahn-Ring 6, 81739 München, Germany, 8 Max Planck Institute for Extraterrestrial Physics,
Giessenbachstr., 85741 Garching, Germany, 9 Institute ZEL, Research Center Jülich, 52425
Jülich, Germany, 10 Dept. of Electronics & Computer Science, Nihon University, 7-24-1
Narashino-dai Funabashi, Chiba 274-8501, Japan, 11 ETH Zürich, Laboratory for Solid State
Physics, 8093 Zürich, Switzerland
+ Authors contributed equally
* Corresponding author: email

####

For more information, please click here

Contacts:
Theo/Herman Rasing Dürr
Radboud University
SLAC Stanford
00312436553102

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Memory Technology

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project