Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Magnets are chaotic – and fast – at the very smallest scale

Abstract:
Using a new type of camera that makes extremely fast snapshots with an extremely high resolution, it is now possible to observe the behaviour of magnetic materials at the nanoscale. This behaviour is more chaotic than previously thought, as reported in Nature Materials on 17 March. The observed behaviour changes our understanding of data storage, says Theo Rasing, one of the authors of the article.

Magnets are chaotic – and fast – at the very smallest scale

Netherlands | Posted on March 18th, 2013

Surprisingly, it would seem that the chaotic behaviour of the magnetic material is highly significant as far as the transport of magnetic information at the smallest possible scale is concerned. This is the result of research carried out by Theo Rasing's group at Radboud University Nijmegen, with colleagues from Stanford, Berlin and Tokyo. Use was made of a very special measuring instrument - the Linac Coherent Light Source (LCLS) - a unique X-ray laser at SLAC National Accelerator Laboratory. Essentially, this X-ray laser is like a camera with both an extremely short shutter time of 100 femtoseconds (one tenth of a trillionth of a second) and an extremely high spatial resolution of a few nanometers (one billionth of a meter). The measurements show that the magnetic material behaves completely different at the nanoscale than at the macroscale.

Nanoscale spin transport

Seen at the atomic scale, all magnets are made up of lots of small magnets, called spins. Magnetic switching for data storage involves reversing the magnetisation direction of the spins: a north pole becomes a south pole, and vice versa. The magnetic material in question contained two spin types from two different elements: iron (Fe) and gadolinium (Gd). The researchers observed that, at the nanoscale, the spins were unevenly distributed: there were areas with a higher than average amount of Fe and areas with a higher than average amount of Gd - hence chaotic magnets.

It appears that magnetic switching starts with the ultrafast transport (~10nm/300fs) of spins between the Fe areas and the Gd areas, after which collisions result in the reversal. Such an ultrafast transfer of spin information has not yet been observed at such a small scale.

Future: smaller is faster

These results make it possible to develop ultrafast nanomagnets in the future in which spin transfer is further optimised through nanostructuring. This will open up pathways for even smaller and faster magnetic data storage.

Full bibliographic informationC.E. Graves, A.H. Reid, T. Wang, B. Wu, S. de Jong, K. Vahaplar, I. Radu, D.P. Bernstein, M. Messerschmidt, L. Müller5, R. Coffee, M. Bionta, S.W. Epp, R. Hartmann, N. Kimmel, G. Hauser, A. Hartmann, P. Holl7, H. Gorke, J. H. Mentink, A. Tsukamoto, A. Fognini, J.J. Turner, W.F. Schlotter, D. Rolles, H. Soltau, L. Strüder, Y. Acremann11, A.V. Kimel, A. Kirilyuk, Th. Rasing, J. Stöhr, A.O. Scherz, H.A. Dürr, Nanoscale spin reversal by nonlocal angular momentum transfer following ultrafast laser excitation in ferrimagnetic GdFeCo, Nature Material, online 17 March 2013. DOI 10.1038/NMAT3597.

Author affiliations:

C.E. Graves1,2+, A.H. Reid1,3+, T. Wang1,4, B. Wu1,2, S. de Jong1, K. Vahaplar3, I. Radu3, D.P.
Bernstein1,2, M. Messerschmidt1, L. Müller5, R. Coffee1, M. Bionta1, S.W. Epp6, R. Hartmann7,
N. Kimmel8, G. Hauser8, A. Hartmann7, P. Holl7, H. Gorke9, J. H. Mentink3, A. Tsukamoto10, A.
Fognini11, J.J. Turner1, W.F. Schlotter1, D. Rolles6, H. Soltau7, L. Strüder8, Y. Acremann11, A.V.
Kimel3, A. Kirilyuk3, Th. Rasing3, J. Stöhr1, A.O. Scherz1, H.A. Dürr1*

1 SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park CA 94025, USA, 2
Department of Applied Physics, Stanford University, Stanford, CA 94305, USA, 3 Radboud
University Nijmegen, Institute for Molecules and Materials, Heyendaalseweg 135, 6525 AJ
Nijmegen, The Netherlands, 4 Department of Materials Science and Engineering, Stanford
University, Stanford, CA 94305, USA, 5 DESY Notkestr. 85, 22607 Hamburg, Germany, 6
Advanced Study Group at CFEL, Notkestr. 85, 22607 Hamburg, Germany, 7 PNSensor, Otto-
Hahn-Ring 6, 81739 München, Germany, 8 Max Planck Institute for Extraterrestrial Physics,
Giessenbachstr., 85741 Garching, Germany, 9 Institute ZEL, Research Center Jülich, 52425
Jülich, Germany, 10 Dept. of Electronics & Computer Science, Nihon University, 7-24-1
Narashino-dai Funabashi, Chiba 274-8501, Japan, 11 ETH Zürich, Laboratory for Solid State
Physics, 8093 Zürich, Switzerland
+ Authors contributed equally
* Corresponding author: email

####

For more information, please click here

Contacts:
Theo/Herman Rasing Dürr
Radboud University
SLAC Stanford
00312436553102

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Imaging

Nanoparticles open new window for biological imaging: “Quantum dots” that emit infrared light enable highly detailed images of internal body structures April 10th, 2017

The Catholic University of Rome uses the JPK NanoWizard® AFM & CellHesion® systems to understand how cells sense and respond to mechanical stimuli April 5th, 2017

Tiny sensor lays groundwork for precision X-rays detection via endoscopy:Nanoscale fiber-integrated X-ray sensor opens new doors for medical imaging and radiotherapy March 29th, 2017

“Cysteine Rose” Wins 2016 Thermo Fisher Scientific Electron Microscopy Image Contest: Thermo Fisher honors Andrea Jacassi of the Italian Institute of Technology for image of cysteine crystals using focused ion beam techniques March 27th, 2017

Memory Technology

New ultrafast flexible and transparent memory devices could herald new era of electronics April 1st, 2017

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Discoveries

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Announcements

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Tools

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Nanomechanics, Inc. Unveils New Product at ICMCTF Show April 25th: Nanoindentation experts will launch the new Gemini that measures the interaction of two objects that are sliding across each other – not merely making contact April 21st, 2017

MSP Corporation Announces a New Breakthrough in Monodisperse Droplet Generation April 19th, 2017

Researchers Succeed in Localizing Individual Atoms in Nanostructures Using First Cryo-Transfer LEAP Atom Probe April 19th, 2017

Research partnerships

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

Nanoparticles open new window for biological imaging: “Quantum dots” that emit infrared light enable highly detailed images of internal body structures April 10th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project