Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > High-performance, NW-OPTs open the way for optoelectronic device miniaturization

 Schematic diagram of single-crystalline nanowire organic phototransistors

Copyright @ Wiley-VCH Verlag GmbH & Co. KGaA.
Schematic diagram of single-crystalline nanowire organic phototransistors

Copyright @ Wiley-VCH Verlag GmbH & Co. KGaA.

Abstract:
Research team of Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea, developed high-performance organic phototransistors (OPTs) based on single-crystalline n-channel organic nanowires.

High-performance, NW-OPTs open the way for optoelectronic device miniaturization

Ulsan, Republic of Korea | Posted on March 12th, 2013

Phototransistors are a kind of transistors in which the incident light intensity can modulate the charge-carrier density in the channel. Compared with conventional photodiodes, phototransistors enable easier control of light-detection sensitivity without problems such as the noise increment. However, to date, the research has mostly focused on thin-film OPTs, and nanoscale OPTs have scarcely been reported.

OPTs have many intrinsic advantages over their inorganic counterparts, such as the chemical tunability of optoelectronic properties by molecular design and high potential in low cost, light-weight, flexible applications.

Single-crystalline nano-/microwires (NWs/MWs) based on organic semiconductors have attracted great interest recently as they are promising building blocks for various electronic and optoelectronic applications. In particular, OPTs based on single-crystalline NWs/MWs may yield higher light sensitivity than their bulk counterparts. In addition, their one-dimensional, intrinsically defect-free and highly ordered nature will allow a deeper understanding of the fundamental mechanisms of charge generation and transport in OPTs, while enabling a bottom-up fabrication of optoelectronic nanodevices.

Prof. Joon Hak Oh and Hojeong Yu, working at UNIST, together with Prof. Zhenan Bao at Stanford University, USA, have worked on n-channel single-crystalline nanowire organic phototransistors (NW-OPTs) and observed significant enhancement in the charge-carrier mobility of NW-OPTs.

Prof. Oh said, "The development of OPTs based on n-channel single-crystalline organic semiconducting NWs/MWs is highly desirable for the bottom-up fabrication of complementary metal oxide semiconductor (CMOS)-like photoelectronic circuits, which provides various advantages such as high operational stability, easy control of photoswitching voltages, high photosensitivity and responsivity."

The photoelectronic characteristics of the single-crystalline NW-OPTs such as the photoresponsivity, the photo-switching ratio, and the photoconductive gain, were analyzed from the I-V characteristics coupled with light irradiation and compared with those of vacuum-deposited thin-film devices. The external quantum efficiencies (EQEs) were also investigated for the NW-OPTs and thin-film OPTs. In addition, they calculated the charge accumulation and release rates from deep traps, and investigated the effects of incident light intensity on their photoelectronic properties.

A mobility enhancement is observed when the incident optical power density increases and the wavelength of the light source matches the light-absorption range of the photoactive material. The photoswitching ratio is strongly dependent upon the incident optical power density, whereas the photoresponsivity is more dependent on matching the light-source wavelength with the maximum absorption range of the photoactive material.

NW-OPTs based on n-channel semiconductor, N,N ′-bis(2-phenylethyl)-perylene-3,4:9,10-tetracarboxylic diimide (BPE-PTCDI), exhibited much higher external quantum efficiency (EQE) values (≈7900 times larger) than thin-film OPTs, with a maximum EQE of 263 000%. This phenomena result from the intrinsically defect-free single-crystalline nature of the BPE-PTCDI NWs. In addition, an approach was devised to analyze the charge-transport behaviors using charge accumulation/release rates from deep traps under on/off switching of external light sources.

"Our approach to charge-accumulation/release-rate calculations could provide a fundamental understanding about charge-carrier-density variations under light irradiation, which subsequently enables in-depth study of OPTs," said Prof. Oh, "Hence organic single-crystalline NW-OPTs are a highly promising alternative to conventional thin-film-type photodiodes, and can effectively pave the way for optoelectronic device miniaturization."

This research was supported by a National Research Foundation of Korea (NRF) Grant funded by the Ministry of Education, Science, and Technology (MEST), and the Global Frontier Research Center for Advanced Soft Electronics and published in Advanced Functional Materials (Title: High-Performance Phototransistors Based on Single-Crystalline n-Channel Organic Nanowires and Photogenerated Charge-Carrier Behaviors, 5 Feb 2013).

####

For more information, please click here

Contacts:
Eunhee Song

82-522-171-224

Copyright © Ulsan National Institute of Science and Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article can be found at:

Related News Press

News and information

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Researchers discover new phase of boron nitride and a new way to create pure c-BN February 5th, 2016

Chip Technology

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Polar vortices observed in ferroelectric: New state of matter holds promise for ultracompact data storage and processing February 4th, 2016

Electrons and liquid helium advance understanding of zero-resistance: Study of electrons on liquid helium systems sheds light on zero-resistance phenomenon in semiconductors February 2nd, 2016

Discoveries

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Announcements

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Photonics/Optics/Lasers

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Scientists guide gold nanoparticles to form 'diamond' superlattices: DNA scaffolds cage and coax nanoparticles into position to form crystalline arrangements that mimic the atomic structure of diamond February 4th, 2016

Nature Materials: Smallest lattice structure worldwide: 3-D lattice with glassy carbon struts and braces of less than 200 nm in diameter has higher specific strength than most solids February 3rd, 2016

Silicon-based metamaterials could bring photonic circuits February 1st, 2016

Research partnerships

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Polar vortices observed in ferroelectric: New state of matter holds promise for ultracompact data storage and processing February 4th, 2016

Spin dynamics in an atomically thin semi-conductor February 1st, 2016

Graphene shown to safely interact with neurons in the brain January 31st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic