Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Quantum computing moves forward

A sil­i­con chip lev­i­tates indi­vid­ual atoms used in quan­tum infor­ma­tion pro­cess­ing. Photo: Curt Suplee and Emily Edwards, Joint Quan­tum Insti­tute and Uni­ver­sity of Mary­land. Credit: Science.
A sil­i­con chip lev­i­tates indi­vid­ual atoms used in quan­tum infor­ma­tion pro­cess­ing. Photo: Curt Suplee and Emily Edwards, Joint Quan­tum Insti­tute and Uni­ver­sity of Mary­land.

Credit: Science.

Abstract:
New tech­nolo­gies that exploit quan­tum behav­ior for com­put­ing and other appli­ca­tions are closer than ever to being real­ized due to recent advances, accord­ing to a review arti­cle pub­lished this week in the jour­nal Sci­ence.

Quantum computing moves forward

Princeton, NJ | Posted on March 9th, 2013

These advances could enable the cre­ation of immensely pow­er­ful com­put­ers as well as other appli­ca­tions, such as highly sen­si­tive detec­tors capa­ble of prob­ing bio­log­i­cal sys­tems. "We are really excited about the pos­si­bil­i­ties of new semi­con­duc­tor mate­ri­als and new exper­i­men­tal sys­tems that have become avail­able in the last decade," said Jason Petta, one of the authors of the report and an asso­ciate pro­fes­sor of physics at Prince­ton University.

Petta co-authored the arti­cle with David Awschalom of the Uni­ver­sity of Chicago, Lee Bas­set of the Uni­ver­sity of California-Santa Bar­bara, Andrew Dzu­rak of the Uni­ver­sity of New South Wales and Eve­lyn Hu of Har­vard University.

Two sig­nif­i­cant break­throughs are enabling this for­ward progress, Petta said in an inter­view. The first is the abil­ity to con­trol quan­tum units of infor­ma­tion, known as quan­tum bits, at room tem­per­a­ture. Until recently, tem­per­a­tures near absolute zero were required, but new diamond-based mate­ri­als allow spin qubits to be oper­ated on a table top, at room tem­per­a­ture. Diamond-based sen­sors could be used to image sin­gle mol­e­cules, as demon­strated ear­lier this year by Awschalom and researchers at Stan­ford Uni­ver­sity and IBM Research (Sci­ence, 2013).

The sec­ond big devel­op­ment is the abil­ity to con­trol these quan­tum bits, or qubits, for sev­eral sec­onds before they lapse into clas­si­cal behav­ior, a feat achieved by Dzurak's team (Nature, 2010) as well as Prince­ton researchers led by Stephen Lyon, pro­fes­sor of elec­tri­cal engi­neer­ing (Nature Mate­ri­als, 2012). The devel­op­ment of highly pure forms of sil­i­con, the same mate­r­ial used in today's clas­si­cal com­put­ers, has enabled researchers to con­trol a quan­tum mechan­i­cal prop­erty known as "spin". At Prince­ton, Lyon and his team demon­strated the con­trol of spin in bil­lions of elec­trons, a state known as coher­ence, for sev­eral sec­onds by using highly pure silicon-28.

Quantum-based tech­nolo­gies exploit the phys­i­cal rules that gov­ern very small par­ti­cles — such as atoms and elec­trons — rather than the clas­si­cal physics evi­dent in every­day life. New tech­nolo­gies based on "spin­tron­ics" rather than elec­tron charge, as is cur­rently used, would be much more pow­er­ful than cur­rent technologies.

In quantum-based sys­tems, the direc­tion of the spin (either up or down) serves as the basic unit of infor­ma­tion, which is anal­o­gous to the 0 or 1 bit in a clas­si­cal com­put­ing sys­tem. Unlike our clas­si­cal world, an elec­tron spin can assume both a 0 and 1 at the same time, a feat called entan­gle­ment, which greatly enhances the abil­ity to do computations.

A remain­ing chal­lenge is to find ways to trans­mit quan­tum infor­ma­tion over long dis­tances. Petta is explor­ing how to do this with col­lab­o­ra­tor Andrew Houck, asso­ciate pro­fes­sor of elec­tri­cal engi­neer­ing at Prince­ton. Last fall in the jour­nal Nature, the team pub­lished a study demon­strat­ing the cou­pling of a spin qubit to a par­ti­cle of light, known as a pho­ton, which acts as a shut­tle for the quan­tum information.

Yet another remain­ing hur­dle is to scale up the num­ber of qubits from a hand­ful to hun­dreds, accord­ing to the researchers. Sin­gle quan­tum bits have been made using a vari­ety of mate­ri­als, includ­ing elec­tronic and nuclear spins, as well as superconductors.

Some of the most excit­ing appli­ca­tions are in new sens­ing and imag­ing tech­nolo­gies rather than in com­put­ing, said Petta. "Most peo­ple agree that build­ing a real quan­tum com­puter that can fac­tor large num­bers is still a long ways out," he said. "How­ever, there has been a change in the way we think about quan­tum mechan­ics - now we are think­ing about quantum-enabled tech­nolo­gies, such as using a spin qubit as a sen­si­tive mag­netic field detec­tor to probe bio­log­i­cal systems."

The research at Prince­ton Uni­ver­sity was sup­ported by the Alfred P. Sloan Foun­da­tion, the David and Lucile Packard Foun­da­tion, US Army Research Office grant W911NF-08-1-0189, DARPA QuEST award HR0011-09-1-0007 and the US National Sci­ence Foun­da­tion through the Prince­ton Cen­ter for Com­plex Mate­ri­als (DMR-0819860) and CAREER award DMR-0846341

####

For more information, please click here

Contacts:
Catherine Zandonella

Copyright © Princeton University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract.

Related News Press

News and information

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Govt.-Legislation/Regulation/Funding/Policy

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Chip Technology

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Quantum Computing

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

Clarifiying complex chemical processes with quantum computers August 3rd, 2017

Ultracold molecules hold promise for quantum computing: New approach yields long-lasting configurations that could provide long-sought “qubit” material July 27th, 2017

Into the quantum world with a tennis racket: Classical mechanics helps control quantum computers July 6th, 2017

Sensors

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

Giant enhancement of electromagnetic waves revealed within small dielectric particles: Scientists have done for the first time direct measurements of giant electromagnetic fields July 8th, 2017

Discoveries

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Announcements

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Landscapes give latitude to 2-D material designers: Rice University, Oak Ridge scientists show growing atom-thin sheets on cones allows control of defects August 9th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project