Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Quantum computing moves forward

A sil­i­con chip lev­i­tates indi­vid­ual atoms used in quan­tum infor­ma­tion pro­cess­ing. Photo: Curt Suplee and Emily Edwards, Joint Quan­tum Insti­tute and Uni­ver­sity of Mary­land. Credit: Science.
A sil­i­con chip lev­i­tates indi­vid­ual atoms used in quan­tum infor­ma­tion pro­cess­ing. Photo: Curt Suplee and Emily Edwards, Joint Quan­tum Insti­tute and Uni­ver­sity of Mary­land.

Credit: Science.

Abstract:
New tech­nolo­gies that exploit quan­tum behav­ior for com­put­ing and other appli­ca­tions are closer than ever to being real­ized due to recent advances, accord­ing to a review arti­cle pub­lished this week in the jour­nal Sci­ence.

Quantum computing moves forward

Princeton, NJ | Posted on March 9th, 2013

These advances could enable the cre­ation of immensely pow­er­ful com­put­ers as well as other appli­ca­tions, such as highly sen­si­tive detec­tors capa­ble of prob­ing bio­log­i­cal sys­tems. "We are really excited about the pos­si­bil­i­ties of new semi­con­duc­tor mate­ri­als and new exper­i­men­tal sys­tems that have become avail­able in the last decade," said Jason Petta, one of the authors of the report and an asso­ciate pro­fes­sor of physics at Prince­ton University.

Petta co-authored the arti­cle with David Awschalom of the Uni­ver­sity of Chicago, Lee Bas­set of the Uni­ver­sity of California-Santa Bar­bara, Andrew Dzu­rak of the Uni­ver­sity of New South Wales and Eve­lyn Hu of Har­vard University.

Two sig­nif­i­cant break­throughs are enabling this for­ward progress, Petta said in an inter­view. The first is the abil­ity to con­trol quan­tum units of infor­ma­tion, known as quan­tum bits, at room tem­per­a­ture. Until recently, tem­per­a­tures near absolute zero were required, but new diamond-based mate­ri­als allow spin qubits to be oper­ated on a table top, at room tem­per­a­ture. Diamond-based sen­sors could be used to image sin­gle mol­e­cules, as demon­strated ear­lier this year by Awschalom and researchers at Stan­ford Uni­ver­sity and IBM Research (Sci­ence, 2013).

The sec­ond big devel­op­ment is the abil­ity to con­trol these quan­tum bits, or qubits, for sev­eral sec­onds before they lapse into clas­si­cal behav­ior, a feat achieved by Dzurak's team (Nature, 2010) as well as Prince­ton researchers led by Stephen Lyon, pro­fes­sor of elec­tri­cal engi­neer­ing (Nature Mate­ri­als, 2012). The devel­op­ment of highly pure forms of sil­i­con, the same mate­r­ial used in today's clas­si­cal com­put­ers, has enabled researchers to con­trol a quan­tum mechan­i­cal prop­erty known as "spin". At Prince­ton, Lyon and his team demon­strated the con­trol of spin in bil­lions of elec­trons, a state known as coher­ence, for sev­eral sec­onds by using highly pure silicon-28.

Quantum-based tech­nolo­gies exploit the phys­i­cal rules that gov­ern very small par­ti­cles — such as atoms and elec­trons — rather than the clas­si­cal physics evi­dent in every­day life. New tech­nolo­gies based on "spin­tron­ics" rather than elec­tron charge, as is cur­rently used, would be much more pow­er­ful than cur­rent technologies.

In quantum-based sys­tems, the direc­tion of the spin (either up or down) serves as the basic unit of infor­ma­tion, which is anal­o­gous to the 0 or 1 bit in a clas­si­cal com­put­ing sys­tem. Unlike our clas­si­cal world, an elec­tron spin can assume both a 0 and 1 at the same time, a feat called entan­gle­ment, which greatly enhances the abil­ity to do computations.

A remain­ing chal­lenge is to find ways to trans­mit quan­tum infor­ma­tion over long dis­tances. Petta is explor­ing how to do this with col­lab­o­ra­tor Andrew Houck, asso­ciate pro­fes­sor of elec­tri­cal engi­neer­ing at Prince­ton. Last fall in the jour­nal Nature, the team pub­lished a study demon­strat­ing the cou­pling of a spin qubit to a par­ti­cle of light, known as a pho­ton, which acts as a shut­tle for the quan­tum information.

Yet another remain­ing hur­dle is to scale up the num­ber of qubits from a hand­ful to hun­dreds, accord­ing to the researchers. Sin­gle quan­tum bits have been made using a vari­ety of mate­ri­als, includ­ing elec­tronic and nuclear spins, as well as superconductors.

Some of the most excit­ing appli­ca­tions are in new sens­ing and imag­ing tech­nolo­gies rather than in com­put­ing, said Petta. "Most peo­ple agree that build­ing a real quan­tum com­puter that can fac­tor large num­bers is still a long ways out," he said. "How­ever, there has been a change in the way we think about quan­tum mechan­ics - now we are think­ing about quantum-enabled tech­nolo­gies, such as using a spin qubit as a sen­si­tive mag­netic field detec­tor to probe bio­log­i­cal systems."

The research at Prince­ton Uni­ver­sity was sup­ported by the Alfred P. Sloan Foun­da­tion, the David and Lucile Packard Foun­da­tion, US Army Research Office grant W911NF-08-1-0189, DARPA QuEST award HR0011-09-1-0007 and the US National Sci­ence Foun­da­tion through the Prince­ton Cen­ter for Com­plex Mate­ri­als (DMR-0819860) and CAREER award DMR-0846341

####

For more information, please click here

Contacts:
Catherine Zandonella

Copyright © Princeton University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract.

Related News Press

News and information

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Searching for a nanotech self-organizing principle May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Chip Technology

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

NREL theory establishes a path to high-performance 2-D semiconductor devices April 27th, 2016

Quantum Computing

Researchers create a first frequency comb of time-bin entangled qubits: Discovery is a significant step toward multi-channel quantum communication and higher capacity quantum computers April 28th, 2016

Superfast light source made from artificial atom April 28th, 2016

ORIG3N Added to Companies Presenting at Harris & Harris Group's Annual Meeting, Tuesday June 7, 2016, the New York Genome Center April 27th, 2016

The light stuff: A brand-new way to produce electron spin currents - Colorado State University physicists are the first to demonstrate using non-polarized light to produce a spin voltage in a metal April 26th, 2016

Sensors

Electrically Conductive Graphene Ink Enables Printing of Biosensors April 23rd, 2016

Highlights from the Graphene Flagship April 22nd, 2016

Team builds first quantum cascade laser on silicon: Eliminates the need for an external light source for mid-infrared silicon photonic devices or photonic circuits April 21st, 2016

With simple process, UW-Madison engineers fabricate fastest flexible silicon transistor April 21st, 2016

Discoveries

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Announcements

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Brookhaven's Oleg Gang Named a Battelle 'Inventor of the Year': Recognized for work using DNA to guide and regulate the self-assembly of nanoparticles into clusters and arrays with controllable properties April 25th, 2016

Zip software can detect the quantum-classical boundary: Compression of experimental data reveals the presence of quantum correlations April 21st, 2016

Making electronics out of coal: Instead of burning up this complex hydrocarbon, let's make devices from it April 20th, 2016

Nano-magnets produce 3-dimensional images: Wide-view 3-dimensional holographic display composed of nano-magnetic pixels April 20th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic