Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


Home > Press > Two-stage Vectors Deliver Gene Silencing Therapy to Tumors

Breast cancer patients with the so-called triple negative form of the disease have the lowest survival rate among all breast cancer patients, in large part because this type of cancer does not respond to most anti-cancer agents. Recent studies have shown, though, that triple negative breast cancers are susceptible to agents that interfere with DNA repair pathways, especially a protein known as ATM. Now, a research team from The Methodist Hospital Research has capitalized on this weakness with promising results.

Two-stage Vectors Deliver Gene Silencing Therapy to Tumors

Bethesda, MD | Posted on March 7th, 2013

Haifa Shen and Mauro Ferrari led a team of investigators that created a two-stage delivery vehicle capable of ferrying an agent that targets this protein to triple negative breast tumors. When administered to mice bearing human breast tumors, the drug-bearing vector stopped the production of the ATM protein and greatly inhibited the growth of what otherwise is an aggressive cancer. The researchers published the results of their work in the journal Small. Dr. Ferrari is co-principal investigator of the Texas Center for Cancer Nanomedicine, one of nine Centers of Cancer Nanotechnology Excellence funded by the National Cancer Institute.

To stop the production of ATM, the researchers created a short interfering RNA (siRNA) that targets the messenger RNA that codes for this protein. siRNA-based therapies have shown promise for treating cancer, but delivering them to tumors at therapeutic levels has proven challenging. Dr. Shen and Dr. Ferrari solved this problem using a two-stage delivery vehicle consisting of a nanoscale liposome and a disc-shaped, nanoporous silicon microparticle. The researchers use the liposome to encapsulate the siRNA agent and they take advantage of the biocompatible silicon microparticles to safely ferry the liposomes through the blood stream and deposit them just outside of the tumors.

Because of their disc shape, the silicon microparticles accumulate efficiently in the blood vessels that surround tumors. In earlier work, Dr. Ferrari and his Texas Center for Cancer Nanomedicine colleague Paulo Decuzzi had shown that approximately between six and 10 percent of an injected dose of silicon microparticles accumulate in the tumor vasculature compared to less than 0.1 percent of conventionally administered drug. Once the microparticles settle around the tumor, they gradually degrade into non-toxic materials and slowly release the liposomes. The liposomes then migrate into the tumors, where they are taken up by cancer cells and release their siRNA payload.

While experiments in tumor bearing mice showed that this two-stage delivery system was effective at suppressing tumor growth, they also demonstrated that it did not trigger a potentially dangerous immune response that is often seen with siRNA therapies. Additionally, during the four-week experiments, body weight, blood chemistry, and tissue histology did not reveal significant toxicities which are often associated with chemotherapies.


About The National Cancer Institute (NCI)
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © The National Cancer Institute (NCI)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract - "Multistage Vectored siRNA Targeting Ataxia-Telangiectasia Mutated for Breast Cancer Therapy."

Related News Press

News and information

Could candle soot power electric vehicles? New research shows candle soot can power the lithium batteries in electric cars October 8th, 2015

Oxford Instruments announces call for nominations for the 2016 Science Prizes for Europe and Americas October 7th, 2015

Leti Joins GLOBALFOUNDRIES’ Eco-System Partners With Focus on Supporting 22FDX™ Platform: GLOBALSOLUTIONSSM Partnership Will Enable Leti’s FD-SOI and ASICS Design-and-Fabrication Solutions on GLOBALFOUNDRIES Technologies October 7th, 2015

Dais Analytic Debuts Revolutionary Cooling Tower Technology: Nanostructured Aqualyte™ Technology Provides Alternative to Traditional Cooling Tower Methods, Reducing Germ-Infested Water, and Requiring Less Maintenance and Overall Cost October 7th, 2015


Global Engineering Firm DPS to Establish U.S. Advanced Technology Group Headquarters at SUNY Poly CNSE and Create 56 New Jobs Under STARTUP-NY Initiative October 6th, 2015

Big range of behaviors for tiny graphene pores: Like biological channels, graphene pores are selective for certain types of ions October 6th, 2015

Research improves efficiency from larger perovskite solar cells October 6th, 2015

Graphene teams up with two-dimensional crystals for faster data communications October 5th, 2015


Latest Hygienic Products Presented in Iran Nano 2015 October 7th, 2015

Electron tomography with 3,487 images in 3.5 seconds: High-speed electron tomography sets new standards for 3-D images of the nanoworld October 6th, 2015

Brightness-equalized quantum dots improve biological imaging October 5th, 2015

Sniffing out cancer with improved 'electronic nose' sensors October 2nd, 2015


Double the (quantum) fun: A detailed analysis of the electrical characteristics of a tiny transistor made from 2 quantum dots could help researchers design better devices to manipulate single electrons October 7th, 2015

Organic semiconductors get weird at the edge: University of British Columbia research October 7th, 2015

Modification of Nanofiltration Membranes in Water Purification Process October 7th, 2015

Big range of behaviors for tiny graphene pores: Like biological channels, graphene pores are selective for certain types of ions October 6th, 2015


Could candle soot power electric vehicles? New research shows candle soot can power the lithium batteries in electric cars October 8th, 2015

Latest Hygienic Products Presented in Iran Nano 2015 October 7th, 2015

From trees to power: McMaster engineers build better energy storage device October 7th, 2015

Discovery about new battery overturns decades of false assumptions October 7th, 2015

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

Car Brands
Buy website traffic