Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New Fischer-Tropsch catalyst invented in Amsterdam

Abstract:
Inspired by patents from the 1960's audio cassette recording industry, UvA chemists now developed a new Fischer-Tropsch catalyst. It can be used for the making of synthetic fuels from natural gas and biomass. This week the research on the new nanocobalt-ironoxide catalyst was published as a VIP article in Angewandte Chemie. The catalyst was patented by the Total S.A. oil and gas company.

New Fischer-Tropsch catalyst invented in Amsterdam

Amsterdam, Netherlands | Posted on March 6th, 2013

Roberto Calderone, Raveendran Shiju and Gadi Rothenberg from the Heterogeneous Catalysis and Sustainable Chemistry group (Van ‘t Hoff Institute for Molecular Sciences) succeeded in growing nanometer-thin cobalt shells on iron oxide particles. These new materials are excellent Fischer-Tropsch (F-T) catalysts, giving good diesel fractions.

The Fischer-Tropsch process is used for producing fuels from synthesis gas, which in turn is made from natural gas, biomass or coal. The large reserves of shale gas and natural gas currently changing the world energy market have raised interest in F-T technology. But there is a catch: F-T reactors are huge, and typically use hundreds of tons of catalyst.

Low cost, high performance
Cobalt-based catalysts are the optimal choice for synthesizing middle distillate fuels such as diesel and kerosene with F-T technology. But cobalt is also expensive. In 2009 the Total Gaz & Power company contacted Rothenberg's group to develop a new F-T catalyst together. The UvA researchers took up the challenge to design a cheaper catalyst that can be prepared on a very large scale, yet performs at least as well as pure cobalt.

The chemical aspects of their ambition were daunting. Gaining an economic advantage requires engineering of the particles at single-nanometer resolution, yet in a manner that can be scaled up to multi-ton scale. This rules out all chemical procedures that require high sophistication, extreme temperatures, or expensive chemicals.

Inspired by audio tape
The UvA team sought to meet these restraints with the so-called surface nucleation of a cobalt phase onto iron oxide colloids. They were inspired by the method that companies such as TDK used in the 1960s for producing magnetic tapes for audio cassettes. The standard recording materials in these cassettes were polymer-based tapes containing cigar-shaped cobalt-doped iron oxide particles.

After two years of hard work they achieved a cheap, reliable, efficient and, most importantly, scalable method for synthesizing spherical core-shell catalyst particles. The particles have an average diameter of 10 nanometer (nm) and consist of a 8 nm magnetite (iron oxide) core with a cobalt oxide shell of only 1 nm. The new catalysts were then tested in collaboration with research groups of Andreas Jess in Bayreuth and Andrei Khodakov in Lille. They proved to be excellent Fischer-Tropsch catalysts, giving good diesel fractions.

Ideas and innovation
Rothenberg is proud of his team: "As an academic group, we cannot compete with industrial research teams on facilities, but we can compete with them on ideas and innovation".

Roberto Calderone
He gives credit to his co-worker Roberto Calderone, who persistently pursued the idea of particle synthesis and coating based on the audio cassettes approach.

Rothenberg: "Being a chemist, I love the idea of making something so accurate (the cobalt shells are only a few atoms thick) yet using a procedure that any high-school student can repeat".

The new catalysts and the method for their preparation were patented by Total S.A., naming the UvA researchers as co-inventors. The research has just been published online as a VIP communication in the top-tier journal Angewandte Chemie and will be featured on the printed issue cover.

Full bibliographic information

De novo design of nanostructured iron-cobalt Fischer-Tropsch catalysts. V.R. Calderone, N.R. Shiju, D. Curulla Ferré, S. Chambrey, A. Khodakov, A. Rose, J. Thiessen, A. Jess and G. Rothenberg. Angew. Chem. Int. Ed., 2013, EarlyView.
DOI: 10.1002/anie.201209799

####

For more information, please click here

Contacts:
Laura Erdtsieck
+31 20 525 2695


Prof. dr. Gadi Rothenberg
(0031) 20 525 6963

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemistry

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Patents/IP/Tech Transfer/Licensing

Getting drugs across the blood-brain barrier using nanoparticles March 3rd, 2023

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tumor tissue for long-term remission and lung tumor elimination in this form of metastasized breast cance May 13th, 2022

Metasurfaces control polarized light at will: New research unlocks the hidden potential of metasurfaces August 13th, 2021

Arrowhead Pharmaceuticals Announces Closing of Agreement with Takeda November 27th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project