Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Traceable nanoparticles may be the next weapon in cancer treatment

Eva Malmström-Jonsson
Eva Malmström-Jonsson

Abstract:
Small particles loaded with medicine could be a future weapon for cancer treatment. A recently-published study shows how nanoparticles can be formed to efficiently carry cancer drugs to tumor cells. And because the particles can be seen in MRI images, they are traceable.

Traceable nanoparticles may be the next weapon in cancer treatment

Stockholm, Sweden | Posted on March 6th, 2013

Both therapeutic and diagnostic in function, the so-called "theranostic" particles were developed by a team including KTH Professor Eva Malmström-Jonsson, from the School of Chemical Science, as well as researchers at Sweden's Chalmer's University and the Karolinska Institute in Stockholm.

Malmström-Jonsson says that the particles, which the team developed for breast cancer treatment, are biodegradable and non-toxic. Their research was published in the science journal Particle & Particle Systems Characterization.

The study resulted in a method to make nanoparticles spontaneously build themselves up with tailored macromolecules. The formation requires a balance between the particle's hydrophilic (capable of dissolving in water) and hydrophobic (not dissolvable in water) parts. The hydrophobic portion makes it possible to fill the particle with the drug.

A relatively high concentration of the natural isotope 19F (fluorine) makes the particles clearly visible on high-resolution images taken by MRI (magnetic resonance imaging). By following the path of theranostic nanoparticles in the body, it is possible to obtain information about how the drug is taken up by the tumor and whether the treatment is working.

Scientists filled nanoparticles with the chemotherapy drug doxorubicin (known as chemo), which is used today to treat bladder, lung, ovarian and breast cancer, In experiments on cultured cells, they showed that the particles themselves are not harmful but can effectively kill cancer cells after being loaded with the drug.

The next step is to develop the system to target tumors that are difficult to treat with chemotherapy, such as brain tumors, pancreatic cancer, and drug-resistant breast cancer tumors.

"By targeting groups on the surface, or by changing the size or introducing ionic groups on our nanoparticles, one can increase the selective uptake in these tumors," says Andreas Nystrom, an associate professor of nanomedicine at the Swedish Medical Nanoscience Center and Department of Neuroscience, Karolinska Institute.

In the long term, research can result in tailored chemotherapy treatments that seek out tumor cells. This would enable the toxic drug to be delivered more specifically to the tumor, making the treatment more effective while reducing side effects.

"What we want to do is try to give nanoparticles a homing function on the surface so that the drug is as effective as possible and can be transported to the right place," Malmström-Jonsson says.

The study is funded in part by two grants from the Swedish Research Council to Andreas Nystrom and Eva Malmström-Jonsson. Malmström-Jonsson and Nystrom are also active in the company Polymer Factory Sweden AB.

####

About KTH The Royal Institute of Technology
Research at KTH includes not only technology but also natural and social sciences. Our varied research profile does support both general and special expertise, particularly in today´s top-priority subject areas, such as IT and biotechnology.

For more information, please click here

Contacts:
David Callahan

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Imaging

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Aspen Aerogels to Present at the Cowen and Company Technology, Media & Telecom Conference May 21st, 2015

Govt.-Legislation/Regulation/Funding/Policy

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

Nanomedicine

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Discoveries

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Announcements

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

What makes cancer cells spread? New device offers clues May 19th, 2015

Researchers build new fermion microscope: Instrument freezes and images 1,000 individual fermionic atoms at once May 13th, 2015

International and U.S. Students and Teachers Headed to Toronto for 34th Annual International Space Development Conference®: Students competed in prestigious NSS-NASA Ames Space Settlement Design Contest May 9th, 2015

Pixelligent Technologies Announces $1M Phase-II OLED Lighting Award From the US Department of Energy May 9th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project