Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Carbon nanocoils fracture like an automobile spring

Carbon nanocoils
Carbon nanocoils

Abstract:
Carbon nanocoils (CNCs) composed of helical shaped carbon nanofibers have potential applications including mechanical springs, nano-solenoids, and field emitters.

However, in spite of the important applications of CNCs as mechanical spring for nano-eletcromechanical system (NEMS) there is a scarcity of data on CNC fracturing under tensile loads.

Here, Taiichiro Yonemura and colleagues at Toyohashi University of Technology describe the CNC fracturing properties of eight CNCs using focused ion beam (FIB) modification.

Carbon nanocoils fracture like an automobile spring

Toyohashi, Japan | Posted on March 5th, 2013

CNC tensile tests were conducted as follows: The CNCs were installed into an FIB system with a tungsten (W) probe with a 500 nm tip diameter and the W probe moved until it adhered to CNC using Pt ion beam whereas the Si ion beam cut the CNC bottom; then the CNC-adhered W probe approaches a Si substrate surface, until the CNC was almost perpendicularly to the Si substrate. Tensile tests for 8 CNCs were carried out by gradually changing the distance between the Si substrate and the W probe.

The elongation behavior of CNCs in the FIB instrument was monitored. Experiments showed the CNC coil pitch to return to its original length after fracturing, thus confirming CNC to be a spring. The average stretch ratio of the 8 CNCs on the verge of fracture was 150%.

The ratio of the maximum to average stress on the fractured surface was estimated to be in the range 1.3 to 1.7 indicating stress concentrations on the coil wire inner edge, and scanning microscopy confirmed a hollow region on the inner edge of all fractured surfaces.

The starting point of the CNC fracturing observed in the inner edge matched that of industrial steel coil springs used in automobiles.

Reference:
Taiichiro Yonemura, Yoshiyuki Suda, Hideto Tanoue, Hirofumi Takikawa, Hitoshi Ue, Kazuki Shimizu and Yoshito Umeda.
Torsion Fracture of Carbon Nanocoils
Journal of Applied Physics, 112, 084311 (2012).
Digital Object Identifier (DOI): 10.1063/1.4758921
Department of Electrical and Electronic information Engineering, Toyohashi University of Technology.
Department website: www.tut.ac.jp/english/introduction/department02.html

####

About Toyohashi University of Technology
Founded in 1976, Toyohashi University of Technology is a vibrant modern institute with research activities reflecting the modern era of advanced electronics, engineering, and life sciences.

For more information, please click here

Contacts:
Toyohashi University of Technology
1-1 Hibarigaoka, Tempaku
Toyohashi, Aichi Prefecture, 441-8580, JAPAN
Inquiries: International Affairs Division

TEL: +81-532-44-6577
or +81-532-44-6546
FAX: +81-532-44-6557

Copyright © Toyohashi University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Conductive Inks: booming to $2.8 billion by 2024 April 17th, 2014

Harris & Harris Group Continues Its Blog Series to Highlight Most Impactful Portfolio Companies With Champions Oncology, Inc. April 17th, 2014

Imaging

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

Discoveries

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Thinnest feasible membrane produced April 17th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

Announcements

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Tools

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Aerotech X-Y ball-screw stage for economical high performance Planar positioning April 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE