Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Brookhaven Lab Physicist Receives Charles Hirsch Award from the Institute of Electrical and Electronics Engineers: Novel design of accelerator components enables exploration of fundamental physics, materials science, and more

John Smedley
John Smedley

Abstract:
John Smedley, a physicist at the U.S. Department of Energy's Brookhaven National Laboratory, has been named the 2013 recipient of the Institute of Electrical and Electronics Engineers (IEEE) Charles Hirsch Award in recognition of his "contributions to the advancement of photocathode technology." Playing an integral role in the success of cutting-edge accelerator projects, photocathode devices designed by Smedley and his colleagues in Brookhaven's Instrumentation Division generate particle beams capable of probing the fundamental laws of nature, the properties of materials for applications in energy technologies, and more.

Brookhaven Lab Physicist Receives Charles Hirsch Award from the Institute of Electrical and Electronics Engineers: Novel design of accelerator components enables exploration of fundamental physics, materials science, and more

Upton, NY | Posted on February 26th, 2013

IEEE is a nonprofit professional association that is a leading authority in technical areas ranging from aerospace and biomedical technology to computer engineering. The Charles Hirsch Award, named for the creative engineer at the Hazeltine Corporation, now BAE Systems, recognizes innovative and significant technical accomplishments. Smedley will be honored at the IEEE Long Island Section's annual awards banquet at the Inn at Fox Hollow on March 21.

"I'm very happy to have been selected for this award, and to have the opportunity to work with my talented colleagues in the Instrumentation Division," said Smedley.

For almost twenty years, Smedley has been researching and designing novel accelerator photocathodes at Brookhaven. Building these miniature electron emitters, which generate the electron beams that are the heart of many accelerator experiments, requires the delicate manipulation of materials, some composed of layers as thin as a single atom. When photocathodes are struck by photons-quantum packets of light-they produce electrons, a conversion from light to electric current that has enabled a long history of technological advances.

"Our group has been involved in almost all of the major accelerator projects at the Laboratory, including the Relativistic Heavy Ion Collider (RHIC), the National Synchrotron Light Source (NSLS), and the upcoming NSLS-II. Accelerator science has had a major impact on the Lab's history, and I think it is also a major element of its future. What we're doing now is using existing technologies to design better photocathodes, which will lead to the next generation of accelerator and light source technologies."

In accelerators, a photocathode exploits the photoelectric effect to produce an electron beam that is used to create a collision with other particles, produce x-ray pulses, or scatter off targets to determine their structure, among other applications. This cathode must be built to withstand the accelerator environment's harsh electric fields, high currents, and chemical contaminants without melting or malfunctioning, and must also be able to generate a consistent high-quality electron beam over a long lifetime.

Smedley's photocathode designs have met these challenges, and benefit from his position in Instrumentation because of his ability to work closely with other groups at Brookhaven. By understanding and using the tools of modern materials science available at NSLS and the Center for Functional Nanomaterials (CFN), Smedley's photocathodes can be engineered by looking at the cathode's development using x-rays in real time, rather than simply judging their effectiveness solely by observing the end result. This technique has been used in semiconductor design and growth for years, but Smedley's team has pioneered its application to photocathode design.

"John is an extremely talented physicist, making vital contributions to the laboratory's core capabilities that extend beyond those relating to his photocathode expertise. His enthusiasm for science enlivens junior and senior colleagues alike, and his recognition by IEEE is thoroughly deserved," said Instrumentation Division Head Graham Smith.

Since so many experiments-including the Source Development Lab (SDL) linear accelerator in Photon Sciences and the Laser-Electron Accelerator Facility (LEAF) in Chemistry-rely on the same fundamental electron source technology, Smedley's work has robust multidisciplinary applications.

"When I came to the NSLS in 2004, I knew nothing about x-ray science," Smedley said. "My training was in accelerator physics. Over the past eight years, I've become a materials scientist, a testament to the dedication and skill of my colleagues. I've used 20 beamlines at the NSLS, and several facilities at the CFN. Brookhaven is the only national lab owned by the DOE that has an instrumentation division, so this sort of work isn't possible anywhere but here, where we have such a broad array of capabilities."

Most recently, Smedley has been involved in the development of a cutting-edge diamond amplified photocathode that may revolutionize fourth-generation light source technology. By using synthetic diamonds, which provide a level of uniformity and purity that make them ideal components for electron amplifiers, Smedley's team was able to create amplifiers capable of increasing an electron beam's current more than 300 times. This kind of amplification would also be useful for linear accelerators, or linacs, including the energy recovery linac that is being developed for RHIC.

In addition, should the "eRHIC" upgrade proposal move forward, which would commission the world's only electron-ion collider, Smedley's group in Instrumentation will be challenged to design the most sophisticated photocathode yet: a device capable of producing a 50-milliamp polarized electron source. To put that in perspective, current polarized electron sources max out at about one milliamp. Smedley and his team have already begun work in the hope that eRHIC will become a reality.

Smedley earned a BA in physics and mathematics at Johns Hopkins University in 1994, and a Ph.D. in accelerator physics from Stony Brook University in 2001. While an undergraduate, Smedley spent time at Brookhaven as part of the Science Undergraduate Laboratory Internship program (SULI), and officially joined the Lab as a Research Associate in 2001.

Funding for the award-winning cathodes came from the DOE Office of Science.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Written by Angela Leroux-Lindsey

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry, and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of the State University of New York, for and on behalf of Stony Brook University, the largest academic user of Laboratory facilities; and Battelle Memorial Institute, a nonprofit, applied science and technology organization. Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more (www.bnl.gov/newsroom) or follow Brookhaven Lab on Twitter (twitter.com/Brookhav
enLab).

For more information, please click here

Contacts:
Karen McNulty Walsh
(631) 344-8350
or
Peter Genzer
(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Laboratories

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

X-ray Study Reveals Way to Control Molecular Vibrations that Transmit Heat: Findings open new pathway for "tuning" materials to ease or insulate against the flow of heat, sound, and other forms of energy June 7th, 2017

Scientists Design Molecular System for Artificial Photosynthesis: System is designed to mimic key functions of the photosynthetic center in green plants to convert solar energy into chemical energy stored by hydrogen fuel June 2nd, 2017

NREL’s Advanced Atomic Layer Deposition Enables Lithium-Ion Battery Technology: May 10th, 2017

Physics

In atomic propellers, quantum phenomena can mimic everyday physics June 1st, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Govt.-Legislation/Regulation/Funding/Policy

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Announcements

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Energy

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

The 2017 Winners for Generation Nano June 8th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Alliances/Trade associations/Partnerships/Distributorships

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

Thought Leaders and Experts Join National Graphene Association Advisory Board June 16th, 2017

Microsoft, Purdue collaborate to advance quantum computing May 30th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project