Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Leading-Edge Research at SUNY NanoCollege Generates Nearly 50 Technical Papers to be Presented at Prestigious Lithography Forum

Abstract:
CNSE and its global corporate partners to showcase innovative technologies at SPIE 2013.

Advanced Lithography conference; Professor Alain Diebold to be recognized as SPIE Fellow.

Leading-Edge Research at SUNY NanoCollege Generates Nearly 50 Technical Papers to be Presented at Prestigious Lithography Forum

Albany, NY | Posted on February 21st, 2013

Continuing to support the vision and leadership of Governor Andrew Cuomo through which New York is being transformed into the worldwide epicenter for nanotechnology, the SUNY College of Nanoscale Science and Engineering (CNSE) announced today that pioneering scientific research conducted at CNSE's Albany NanoTech Complex has contributed to nearly 50 technical papers being presented at the world's preeminent lithography conference.

"As further testimony to Governor Andrew Cuomo's strategic blueprint that is establishing New York as the leading global hub for high-tech innovation and manufacturing, CNSE is delighted to showcase the industry-leading research capabilities at its world-class Albany NanoTech Complex as part of the world's foremost lithography conference," said CNSE Executive Vice President of Innovation and Technology and Vice President for Research Dr. Michael Liehr. "The papers presented by CNSE's faculty and researchers, along with its global corporate partners, highlight the success of this unique public-private model in shattering scientific boundaries and driving critical advances to meet the needs of industry."

The research conducted at CNSE to be featured at the SPIE 2013 Advanced Lithography conference is the culmination of efforts by both CNSE scientists and the college's global corporate partners, including a number of papers that showcase joint research resulting from the NanoCollege's unique collaborative partnerships. Presenting corporate partners include IBM, GLOBALFOUNDRIES, SEMATECH, Applied Materials, Tokyo Electron and Vistec Lithography.

Forum papers focus on a variety of research topics that are critical to moving the nanoelectronics industry forward and overcoming technical challenges, including extreme ultraviolet (EUV) micro-exposure tool use at CNSE; EUV photoresist development and imaging; EUV mask blank fabrication; outgassing effects in EUV photoresist; eBeam, X-ray, and optical metrology techniques; directed self-assembly used in finFET fabrication; phase defect detection in EUV mask blanks; phase shift focus monitors; KrF hybrid photo resist development; LER measurement and mitigation; multilayer deposition techniques for EUV mask blanks; resolution improvement using pupil filtering in EUV lithography; the out-of-band illumination effect on EUV lithography; and EUV mask inspection techniques.

Also at the conference, SPIE will officially recognize CNSE Empire Innovation Professor of Nanoscale Science Dr. Alain Diebold as an SPIE Fellow. He is one of only 69 members of distinction to earn the honor in 2013, which highlights technical achievements and service to the general optics community, as well as service to the society.

Known as the world's leading nanoelectronics lithography conference and exhibition, the 39th annual SPIE Advanced Lithography conference is being held February 24 through 28 in California at the San Jose Convention Center and San Jose Marriott.

For more information on the conference, visit spie.org/x10942.xml.

####

About UAlbany NanoCollege
The UAlbany CNSE is the first college in the world dedicated to education, research, development and deployment in the emerging disciplines of nanoscience, nanoengineering, nanobioscience and nanoeconomics. With more than $14 billion in high-tech investments, CNSE represents the world’s most advanced university-driven research enterprise, offering students a one-of-a-kind academic experience and providing over 300 corporate partners with access to an unmatched ecosystem for leading-edge R&D and commercialization of nanoelectronics and nanotechnology innovations. CNSE’s footprint spans upstate New York, including its Albany NanoTech Complex, an 800,000-square-foot megaplex with the only fully-integrated, 300mm wafer, computer chip pilot prototyping and demonstration line within 85,000 square feet of Class 1 capable cleanrooms. More than 3,100 scientists, researchers, engineers, students and faculty work here, from companies including IBM, Intel, GlobalFoundries, SEMATECH, Samsung, TSMC, Toshiba, Applied Materials, Tokyo Electron, ASML and Lam Research. An expansion now underway, part of which will house the world’s first Global 450mm Consortium, will add nearly 500,000 square feet of next-generation infrastructure, an additional 50,000 square feet of Class 1 capable cleanrooms, and more than 1,000 scientists, researchers and engineers from CNSE and global corporations. In addition, CNSE’s Solar Energy Development Center in Halfmoon provides a prototyping and demonstration line for next-generation CIGS thin-film solar cells, supporting its leadership of the U.S. Photovoltaic Manufacturing Consortium (PVMC). CNSE’s Smart System Technology and Commercialization Center of Excellence (STC) in Rochester offers state-of-the-art capabilities for MEMS fabrication and packaging. CNSE also co-founded and manages operations at the Computer Chip Commercialization Center at SUNYIT in Utica and is a co-founder of the Nanotechnology Innovation and Commercialization Excelerator in Syracuse.

For more information, please click here

Contacts:
Steve Janack
CNSE
Vice President
Marketing and Communications
(518) 956-7322

Copyright © UAlbany NanoCollege

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Govt.-Legislation/Regulation/Funding/Policy

UNC Charlotte-led team invents new anticoagulant platform, offering hope for advances for heart surgery, dialysis, other procedures July 15th, 2022

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

Rensselaer researchers learn to control electron spin at room temperature to make devices more efficient and faster: Electron spin, rather than charge, holds the key July 15th, 2022

Crystal phase engineering offers glimpse of future potential, researchers say July 15th, 2022

Academic/Education

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Lifeboat Foundation Guardian Winner Jeff Bezos Donates One Million to Lifeboat Foundation Dream Project Winner Teachers in Space July 30th, 2021

NSF renews Rice-based NEWT Center for water treatment: Partnership primed to introduce game-changing technologies to address global needs October 15th, 2020

Chip Technology

The best semiconductor of them all? Researchers have found a material that can perform much better than silicon. The next step is finding practical and economic ways to make it July 22nd, 2022

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Announcements

Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Events/Classes

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

June Conference in Grenoble, France, to Explore Pathways to 6G Applications, Including ‘Internet of Senses’, Sustainability, Extended Reality & Digital Twin of Physical World: Organized by CEA-Leti, the Joint EuCNC and 6G Summit Sees Telecom Sector as an ‘Enabler for a Sustainabl June 1st, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Could quantum technology be New Mexico’s next economic boon? Quantum New Mexico Coalition aims to establish state as national hub April 1st, 2022

Alliances/Trade associations/Partnerships/Distributorships

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

University of Illinois Chicago joins Brookhaven Lab's Quantum Center June 10th, 2022

University of Strathclyde and National University of Singapore to co-ordinate satellite quantum communications May 13th, 2022

CEA and Startup C12 Join Forces to Develop Next-Generation Quantum Computers with Multi-Qubit Chips at Wafer Scale March 25th, 2022

Printing/Lithography/Inkjet/Inks/Bio-printing/Dyes

Newly developed technique to improve quantum dots color conversion performance: Researchers created perovskite quantum dot microarrays to achieve better results in full-color light-emitting devices and expand potential applications June 10th, 2022

On-Chip Photodetection: Two-dimensional material heterojunctions hetero-integration May 13th, 2022

With a zap of light, system switches objects' colors and patterns: "Programmable matter" technique could enable product designers to churn out prototypes with ease May 6th, 2021

New 3D-Bioprinter + Bioink Use Living Cells Straight From Culture Plate: Cell models mimicking natural tissue topography herald new era for biomedical research April 13th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project