Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New Innovative Nano Sized Metallic Semi-Conductor: Indian researchers have explored the semiconducting nature of lead nanopowder

T. Theivasanthi
T. Theivasanthi

Abstract:
Indian researchers have developed a new metallic semiconductor. The group (Theivasanthi and Alagar), based at Centre for Research and Post Graduate Department of Physics, Ayya Nadar Janaki Ammal College comments: "To our best knowledge, this is the first demonstration of semiconducting nature of lead nanopowder (Pb). So far, lead metal has been known as a good / super conductor." The researchers have explained the synthesis procedures of this metal powder in their earlier report [Theivasanthi et al, arXiv:1212.5795] and explore its semiconducting properties in current report [Theivasanthi et al, arXiv:1302.1456]. Findings of this study suggests that the synthesized material is an efficient semiconducting material and can be utilized for making solar cells, optoelectronic, power and other semiconductor devices. TEM image of spherical Pb Nanoparticles is in Fig.1. This work throws some light on and helps further research on nano-sized lead powder.

New Innovative Nano Sized Metallic Semi-Conductor: Indian researchers have explored the semiconducting nature of lead nanopowder

India | Posted on February 18th, 2013

It is a well known fact that generally nano-materials have behaviors different from their bulk material. Size and shape provides important control over many of the physical properties (viz., melting point, magnetism, specific heat, conductivity, band gap, etc.), luminescence, optical, chemical and catalytic properties of nanomaterials. The present research has been done, based on these facts and the new nano sized Pb metallic semiconductor has been innovated. Photoluminescence study of the material indicates the emission of photon and suggests presence of bandgap in the material. This confirms semiconducting properties. PL spectra are in Fig.2 & 3.

As a direct bandgap material, the visible light shining on its surface is well absorbed by this material. Also, the large surface area (314 nm2) and high specific surface area (52m2g-1) of this material augments its light absorbance property. Quantum yield value greater than 1 of this material is the result of the gain of energy and it shows possible utilization for heat or photochemical reaction or photo-induced or radiation-induced chain reactions, in which a single photon may trigger a long chain of transformations. These characters will be very useful while applying this semiconductor material in photovoltaic cells.

The researchers have studied band gap values of Pb nanopowder obtained from UV-Vis, PL, Cyclic voltammetry analyses and resistivity values from Four probe analyses results. "Our data clearly indicates the semiconducting nature of Pb nanopowder and its direct bandgap," the researchers comment, adding: "Further research related to electrical behaviors, battery performances etc. of this material are going on."

####

For more information, please click here

Contacts:
T. Theivasanthi

Copyright © SciGuru Science News

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

This research has been published in arXiv of Cornell University:

and:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project