Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Quantum Cryptography Put to Work for Electric Grid Security

The miniature transmitter communicates with a trusted authority to generate random cryptographic keys to encode and decode information.
The miniature transmitter communicates with a trusted authority to generate random cryptographic keys to encode and decode information.

Abstract:
Recently a Los Alamos National Laboratory quantum cryptography (QC) team successfully completed the first-ever demonstration of securing control data for electric grids using quantum cryptography.

Quantum Cryptography Put to Work for Electric Grid Security

Los Alamos, NM | Posted on February 14th, 2013

The demonstration was performed in the electric grid test bed that is part of the Trustworthy Cyber Infrastructure for the Power Grid (TCIPG) project at the University of Illinois Urbana-Champaign (UIUC) that was set up under the Department of Energy's Cyber Security for Energy Delivery Systems program in the Office of Electricity Delivery and Energy Reliability.

Novel methods for controlling the electric grid are needed to accommodate new energy sources such as renewables whose availability can fluctuate on short time scales. This requires transmission of data to and from control centers; but for grid-control use, data must be both trustworthy and delivered without delays. The simultaneous requirements of strong authentication and low latency are difficult to meet with standard cryptographic techniques. New technologies that further strengthen existing cybersecurity protections are needed.

Quantum cryptography provides a means of detecting and defeating an adversary who might try to intercept or attack the communications. Single photons are used to produce secure random numbers between users, and these random numbers are then used to authenticate and encrypt the grid control data and commands. Because the random numbers are produced securely, they act as cryptographic key material for data authentication and encryption algorithms.

At the heart of the quantum-secured communications system is a unique, miniaturized QC transmitter invention, known as a QKarD, that is five orders of magnitude smaller than any competing QC device. Jane Nordholt, the Los Alamos principal investigator, put it this way: "This project shows that quantum cryptography is compatible with electric-grid control communications, providing strong security assurances rooted in the laws of physics, without introducing excessive delays in data delivery."

A late-2012 demonstration at UIUC showed that quantum cryptography provides the necessary strong security assurances with latencies (typically 250 microseconds, including 120 microseconds to traverse the 25 kilometers of optical fiber connecting the two nodes) that are at least two orders of magnitude smaller than requirements. Further, the team's quantum-secured communications system demonstrated that this capability could be deployed with only a single optical fiber to carry the quantum, single-photon communications signals; data packets; and commands. "Moreover, our system is scalable to multiple monitors and several control centers," said Richard Hughes, the co-principal investigator from Los Alamos.

The TCIPG cyber-physical test bed provides a realistic environment to explore cutting-edge research and prove emerging smart grid technology in a fully customizable environment. In this demonstration, high-fidelity power simulation was leveraged using the real-time digital simulator to enable hardware in the loop power simulation to drive real phasor measurement units (PMUs), devices, deployed on today's electric grid that monitor its operation.

"The simulator provides a mechanism for proving technology in real-world scenarios," said Tim Yardley, assistant director of test bed services. "We're not just using perfect or simulated data, so the results demonstrate true feasibility."

The power simulation was running a well-known power-bus model that was perturbed by introducing faults, which drove the analog inputs on the connected hardware PMU. The PMU then communicated via the standard protocol to the quantum cryptography equipment, which handled the key generation, communication and encryption/decryption of the connection traversing 25 kilometers of fiber. A phasor data concentrator then collected and visualized the data.

"This demonstration represents not only a realistic power model, but also leveraged hardware, software and standard communication protocols that are already widely deployed in the energy sector," said William H. Sanders, the Donald Biggar Willett Professor of Engineering at UIUC and principal investigator for TCIPG. "The success of the demonstration emphasizes the power of the TCIPG cyber-physical test bed and the strength of the quantum cryptography technology developed by Los Alamos."

The Los Alamos team submitted 23 U. S. and foreign patent applications for the inventions that make quantum-secured communications possible. The Los Alamos Technology Transfer Division has already received two licensing inquiries from companies in the electric grid control sector, and the office plans an industry workshop for early 2013 when the team's patents will be made available for licensing.

The Los Alamos team is seeking funding to develop a next-generation QKarD using integrated electro-photonics methods, which would be even smaller, more highly integrated, and open the door to a manufacturing process that would result in much lower unit costs.

####

About Los Alamos National Laboratory
Los Alamos National Laboratory, a multidisciplinary research institution engaged in strategic science on behalf of national security, is operated by Los Alamos National Security, LLC, a team composed of Bechtel National, the University of California, The Babcock & Wilcox Company, and URS for the Department of Energy’s National Nuclear Security Administration.

Los Alamos enhances national security by ensuring the safety and reliability of the U.S. nuclear stockpile, developing technologies to reduce threats from weapons of mass destruction, and solving problems related to energy, environment, infrastructure, health, and global security concerns.

For more information, please click here

Contacts:
Nancy Ambrosiano
505.667.0471

Copyright © Los Alamos National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

As You Sow’s Shareholder Inquiry on Nanomaterials Fought by Walgreens: Shareholder Proposal Addresses Recent Laboratory Tests Finding Harmful Nanomaterials in Walgreens’ Store Brand Infant Formula September 21st, 2016

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

Nanotech Grants Options September 22nd, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Laboratories

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Electron beam microscope directly writes nanoscale features in liquid with metal ink September 16th, 2016

World's most powerful X-ray takes a 'sledgehammer' to molecules September 14th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Electron beam microscope directly writes nanoscale features in liquid with metal ink September 16th, 2016

Announcements

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Patents/IP/Tech Transfer/Licensing

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

For first time, carbon nanotube transistors outperform silicon September 8th, 2016

Industrial Nanotech, Inc. Provides Shareholder Update August 22nd, 2016

Starpharma initiates new DEP™ drug delivery program with AstraZeneca July 27th, 2016

Photonics/Optics/Lasers

Mexican scientist in the Netherlands seeks to achieve data transmission ... speed of light September 20th, 2016

Towards Stable Propagation of Light in Nano-Photonic Fibers September 20th, 2016

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic