Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Graphene Technology Gaining a Foothold in the Marketplace: NSF grantee Vorbeck, one of the first companies to produce graphene-based products, is expanding its operations

Rolls of printed graphene electronics are shown, including printed switches, printed sensors and printed resistors as seen before their incorporation into electronics devices.

Credit: Vorbeck Materials Corp
Rolls of printed graphene electronics are shown, including printed switches, printed sensors and printed resistors as seen before their incorporation into electronics devices.

Credit: Vorbeck Materials Corp

Abstract:
Nanotechnologies exist in the realm of billionths of a meter, with tolerances that push the limits of manufacturing--so it can be hard to imagine a factory that can turn out such products on a commercial scale.

Graphene Technology Gaining a Foothold in the Marketplace: NSF grantee Vorbeck, one of the first companies to produce graphene-based products, is expanding its operations

Arlington, VA | Posted on February 13th, 2013

And yet, the United States has created the right environment for nanomanufacturing to succeed here with its strong foundation in basic research and development, a skilled workforce and private and public investment support.

One nanotechnology--graphene--is relatively new to the nanomanufacturing sector, and NSF Small Business Innovation Research grantee Vorbeck Materials of Jessup, Md., is at the forefront of efforts to bring graphene technology to the marketplace.

Graphene--tiny sheets of carbon only one atom thick--materialized as a concept from research laboratories in the 1980s, but researchers only isolated the sheets as a unique two-dimensional material in 2004. Recently, graphene has emerged as a nanotechnology prized for its ability to conduct electricity and its exceptional durability and strength.

According to researchers at Vorbeck, the company's Vor-ink™ graphene-based conductive ink for electronics was first introduced at the Printed Electronics Europe 2009 tradeshow and was directly marketed and sold to customers there--making it one of the first (if not the first) graphene products to go to market.

Vor-ink is a type of conductive ink that allows circuits to be drawn or printed on a variety of substrate materials including paper, paperboard, and polymer films. When compared to traditional industrial standards, it is a more economical way to lay down modern printed circuit boards that are common in today's computer-enabled world.

Now, Vorbeck has announced plans for a second graphene factory in Pocomoke City, on Maryland's Eastern Shore, and they are expanding capacity at their existing Jessup production plant.

In January, Vorbeck demonstrated its technology at the 2013 International Consumer Electronics Show (CES) in Las Vegas, Nev., as part of the Eureka Park Tech Zone. Read more in the press release from NSF and see a video from AOL.

Vorbeck manufactures graphene using a process originally developed by researchers at Princeton University. The company's graphene-enabled products range from electrically conductive paints to high performance batteries to high-security packaging for expensive retail items, and their unique conductive ink is used in high-volume printed electronics applications.

According to the Handbook of Nanoscience, Engineering and Technology, the market for all nanomaterials has been booming, reaching about $300 billion worldwide by 2010 - $110 billion in the United States alone. Of the more than 1,000 nanotechnologies manufactured worldwide in 2010, more than half were produced in the United States.

Vorbeck is adding to that growth with graphene products developed in part with the support of Phase I and Phase II National Science Foundation Small Business Innovation Research (SBIR) grants, U.S. Army SBIR contracts (contract 1 and contract 2), and private investment.

In order to support increased customer demand, Vorbeck accelerated scale-up plans, recently expanding Vor-ink™ capacity to over 40 tons per year by adding new real estate and production equipment to the company's Jessup, Md., facility.

####

For more information, please click here

Contacts:
Joshua A. Chamot
(703) 292-7730

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

For more on the NSF SBIR program, see NSF's Small Business Innovation Research (SBIR) & Small Business Technology Transfer (STTR) Program webpage:

For more on federally funded research in Maryland, visit Research.gov:

Related News Press

News and information

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Graphene

New class of 3D-printed aerogels improve energy storage April 22nd, 2015

'Holey' graphene for energy storage: Charged holes in graphene increase energy storage capacity April 22nd, 2015

Dispersion Stability Test Aids Characterisation of Functionalised Graphene Materials April 21st, 2015

Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices April 20th, 2015

Govt.-Legislation/Regulation/Funding/Policy

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

Electron spin brings order to high entropy alloys April 23rd, 2015

Announcements

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Industrial

Nanoparticles Used to Improve Mechanical, Thermal Properties of Cellulose Fibers April 23rd, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Taking aircraft manufacturing out of the oven: New technique uses carbon nanotube film to directly heat and cure composite materials April 14th, 2015

Industrial Nanotech, Inc. Announces Next Large Order from the Oil and Gas Industry March 26th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Richards-Kortum elected to American Academy of Arts and Sciences: April 22nd, 2015

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Iranian Female Professor Awarded UNESCO Medal in Nanoscience April 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project