Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Home > Press > "Coming Asteroid Could Be Worth $195 Billion" says Deep Space

The asteroid making an extremely close pass of Earth this week could be worth up to $195 billion in metals and propellant, if it were in a different orbit, Deep Space Industries (DSI) announced today. Unfortunately, the path of asteroid 2012 DA14 is tilted relative to Earth, requiring too much energy to chase it down for mining.

"Coming Asteroid Could Be Worth $195 Billion" says Deep Space

McLean, VA | Posted on February 12th, 2013

Sending fuel, water, and building materials into high Earth orbit costs at least $10 million per ton, even using new lower-cost launch vehicles just now coming into service.

"Getting these supplies to serve communications satellites and coming crewed missions to Mars from in-space sources like asteroids is key - if we are going to explore and settle space," said Rick Tumlinson, Chairman of DSI. "While this week's visitor isn't going the right way for us to harvest it, there will be others that are, and we want to be ready when they arrive."

How valuable might such an asteroid be - were it harvestable? According to DSI experts, if 2012 DA14 contains 5% recoverable water, that alone - in space as rocket fuel - might be worth as much as $65 billion. If 10% of its mass is easily recovered iron, nickel and other metals, that could be worth - in space as building material - an additional $130 billion.

If the advent of reusable launch vehicles causes future prices to fall to 20% of today's levels, an asteroid the size of 2012 DA14 would still be worth $39 billion, and the cost of launching hardware to retrieve and process it would be much lower.

"Even with conservative estimates of the potential value of any given asteroid, if we begin to utilize them in space they are all the equivalent of a space oasis for refueling and resupply," said Deep Space CEO David Gump. "Yet we know very little about most of them. That's why Deep Space is starting off with a prospecting campaign using very affordable cubesat technologies and hitching cheap rides to space as secondary payloads on the launch of large communications satellites."

While its trajectory past Earth is known with precision, almost everything else about the rock is uncertain. It could mass as little as 16,000 tons or as much as one million tons. The great range stems from uncertainties about its diameter - from 25 yards to 100 yards - and its composition. While probably mainly stony in nature, it could vary widely in the amount of water and metals it contains. Astronomers have measured how much light is being reflected from its surface but the question mark is the reflectivity of that surface. If the surface is very dark, reflecting that much light means it must be a big object. Conversely, if the surface is light, even a small asteroid could reflect a lot of light.

"This is thought to be a L-class asteroid, and this type generally reflects about 20 percent of the light that strikes it," said Stephen Covey, DSI's Director of Research and Development. "That would make its diameter about 50 yards and mass about 130,000 tons."

Deep Space Industries will be harvesting asteroids to create propellant to extend the working life of communications satellites, to supply future explorers and to build habitats and other structures in space. However, 2012 DA14 is not one of its targets as its orbit around the Sun is significantly inclined relative to that of the Earth around the Sun, so that reaching it would take too much energy. Deep Space believes there are thousands of near Earth asteroids that will be easier to chase down than this one.

"The challenge right now is to get out there soon so we can inspect and sample them," said Tumlinson. "Whether for mining, science or planetary defense, we really need to begin getting close up and personal with these objects."
Deep Space Industries plans to send small probes called FireFlies to examine asteroids and allow comparisons with readings taken by Earth and space based telescopes. They are to be followed by DragonFly sample return missions, to lay the groundwork for potential space mining operations in the 2020 time frame.


For more information, please click here


Copyright © Deep Space Industries

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Optical switching at record speeds opens door for ultrafast, light-based electronics and computers: March 24th, 2023

Robot caterpillar demonstrates new approach to locomotion for soft robotics March 24th, 2023

Semiconductor lattice marries electrons and magnetic moments March 24th, 2023

Light meets deep learning: computing fast enough for next-gen AI March 24th, 2023

Possible Futures

New experiment translates quantum information between technologies in an important step for the quantum internet March 24th, 2023

Graphene grows – and we can see it March 24th, 2023

HKUMed invents a novel two-dimensional (2D) ultrasound-responsive antibacterial nano-sheets to effectively address bone tissue infection March 24th, 2023

A universal HCl-assistant powder-to-powder strategy for preparing lead-free perovskites March 24th, 2023


Robot caterpillar demonstrates new approach to locomotion for soft robotics March 24th, 2023

Semiconductor lattice marries electrons and magnetic moments March 24th, 2023

Light meets deep learning: computing fast enough for next-gen AI March 24th, 2023

Bilayer PET/PVDF substrate-reinforced solid polymer electrolyte improves solid-state lithium metal battery performance March 24th, 2023


Manufacturing advances bring material back in vogue January 20th, 2023

The National Space Society Congratulates NASA on the Success of Artemis I Same-day Launch of the Hakuto-R Lunar Landing Mission will Help Support Future Lunar Crews December 12th, 2022

Trial by wind: Testing the heat resistance of carbon fiber-reinforced ultra-high-temperature ceramic matrix composites: Researchers use an arc-wind tunnel to test the heat resistance of carbon fiber reinforced ultra-high-temperature ceramic matrix composites November 18th, 2022

Surface microstructures of lunar soil returned by Chang’e-5 mission reveal an intermediate stage in space weathering process September 30th, 2022

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project