Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Cheap, strong lithium-ion battery developed at USC: New design uses silicon nanoparticles to improve capacity and recharge more quickly

Abstract:
Researchers at USC have developed a new lithium-ion battery design that uses porous silicon nanoparticles in place of the traditional graphite anodes to provide superior performance.

Cheap, strong lithium-ion battery developed at USC: New design uses silicon nanoparticles to improve capacity and recharge more quickly

Los Angeles, CA | Posted on February 12th, 2013

The new batteries—which could be used in anything from cell phones to hybrid cars—hold three times as much energy as comparable graphite-based designs and recharge within 10 minutes. The design, currently under a provisional patent, could be commercially available within two to three years.

"It's an exciting research. It opens the door for the design of the next generation lithium-ion batteries," said Chongwu Zhou, professor at the USC Viterbi School of Engineering, who led the team that developed the battery. Zhou worked with USC graduate students Mingyuan Ge, Jipeng Rong, Xin Fang and Anyi Zhang, as well as Yunhao Lu of Zhejiang University in China. Their research was published in Nano Research in January.

Researchers have long attempted to use silicon, which is cheap and has a high potential capacity, in battery anodes. (Anodes are where current flows into a battery, while cathodes are where current flows out.) The problem has been that previous silicon anode designs, which were basically tiny plates of the material, broke down from repeated swelling and shrinking during charging/discharging cycles and quickly became useless.

Last year, Zhou's team experimented with porous silicon nanowires that are less than 100 nanometers in diameter and just a few microns long. The tiny pores on the nanowires allowed the silicon to expand and contract without breaking while simultaneously increasing the surface area - which in turn allows lithium ions to diffuse in and out of the battery more quickly, improving performance.

Though the batteries functioned well, the nanowires are difficult to manufacture en masse. To solve the problem, Zhou's team took commercially available nanoparticles—tiny silicon spheres—and etched them with the same pores as the nanowires. The particles function similarly and can be made in any quantity desired.

Though the silicon nanoparticle batteries currently last for just 200 recharge cycles (compared to an average of 500 for graphite-based designs), the team's older silicon nanowire-based design lasted for up to 2,000 cycles, which was reported in Nano Lett last April. Further development of the nanoparticle design should boost the battery's lifespan, Zhou said.

"The easy method we use may generate real impact on battery applications in the near future," Zhou said.

Future research by the group will focus finding a new cathode material with a high capacity that will pair well with the porous silicon nanowires and/or porous silicon nanoparticles to create a completely redesigned battery.

The work was funded by the USC Viterbi School of Engineering.

####

For more information, please click here

Contacts:
Robert Perkins

213-740-9226

Copyright © University of Southern California

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oxford Instruments’ Triton Cryofree dilution refrigerator selected by Oxford University for developing scalable quantum nanodevices September 2nd, 2015

JEOL Introduces New Best-in-Class Field Emission SEM September 2nd, 2015

TCL and QD Vision Demonstrate the Future of Wide Color Gamut Television at IFA: Color IQ Based Display is the First Commercially-Branded Television to Present Over 90% of ITU Rec. 2020 Color Gamut September 2nd, 2015

Atomic Force Microscopes from Asylum Research Guide the Development of Thin Film Deposition and Etch Processes September 2nd, 2015

Discoveries

For 2-D boron, it's all about that base: Rice University theorists show flat boron form would depend on metal substrates September 2nd, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

Announcements

For 2-D boron, it's all about that base: Rice University theorists show flat boron form would depend on metal substrates September 2nd, 2015

Silk bio-ink could help advance tissue engineering with 3-D printers September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

A marine creature's magic trick explained: Crystal structures on the sea sapphire's back appear differently depending on the angle of reflection September 2nd, 2015

Energy

For 2-D boron, it's all about that base: Rice University theorists show flat boron form would depend on metal substrates September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

RUSNANOPRIZE Directorate Announces New Deadline for Nominations Submission – September 11, 2015 September 1st, 2015

Hot electrons point the way to perfect light absorption: Physicists study how to achieve perfect absorption of light with the help of rough ultrathin films September 1st, 2015

Automotive/Transportation

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

Lehigh University-DuPont tribology research seeks to reduce wear and waste August 13th, 2015

Flexible dielectric polymer can stand the heat August 6th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Artificial leaf harnesses sunlight for efficient fuel production August 30th, 2015

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

'Diamonds from the sky' approach turns CO2 into valuable products August 19th, 2015

Drexel engineers 'sandwich' atomic layers to make new materials for energy storage August 15th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic