Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nano-sensor could improve accuracy of CO2 monitoring

Abstract:
Dr. Harry Ruda of the Centre for Nanotechnology at the University of Toronto and Dr. David Risk of St. Francis Xavier are working on single nanowire transistors that should have unprecedented sensitivity for detecting CO2 emissions.

Nano-sensor could improve accuracy of CO2 monitoring

Toronto, Canada | Posted on February 4th, 2013

Researchers at the Universities of Toronto and St. Francis Xavier are developing an affordable, energy efficient and ultra-sensitive nano-sensor that has the potential to detect even one molecule of carbon dioxide (CO2).

Current sensors used to detect CO2 at surface sites are either very expensive or they use a lot of energy. And they're not as accurate as they could be. Improving the accuracy of measuring and monitoring stored CO2 is seen as key to winning public acceptance of carbon capture and storage as a greenhouse gas mitigation method.

With funding from Carbon Management Canada (CMC-NCE), Dr. Harry Ruda of the Centre for Nanotechnology at the University of Toronto and Dr. David Risk of St. Francis Xavier are working on single nanowire transistors that should have unprecedented sensitivity for detecting CO2 emissions.

CMC-NCE, a national network that supports game-changing research to reduce CO2 emissions in the fossil energy industry as well as from other large stationary emitters, is providing Ruda and his team $350,000 over three years. The grant is part of CMC-NCE's third round of funding which saw the network award $3.75 million to Canadian researchers working on eight different projects.

The sensor technology needed to monitor and validate the amount of CO2 being emitted has not kept pace with the development of other technologies required for carbon capture and storage (CCS), says Ruda.

"This is especially true when it comes to surface monitoring verification and accounting (MVA)," he says. "Improving MVA is essential to meet the potential of carbon capture and storage."

And that's where the ultra-sensitive sensor comes in. "It's good for sounding the alarm but it's also good from a regulatory point of view because you want to able to tell people to keep things to a certain level and you need sensors to ensure accurate monitoring of industrial and subsurface environments," Ruda says.

The sensors could provide complete topographic and temporal mapping of carbon emissions, which would help in the design of new protocols for carbon storage and recovery systems as well provide the means for enforcing regulations—all of which will enable markedly reduced emissions. Risk's role will be in testing and translational work that will help embed the sensors in these real-world application environments.

"The way things behave at that nano scale is different than the traditional or micron scale," says Ruda. "We've been working in this area for nearly 20 years and we are among the leaders in developing the know-how for nano sensors."

Ruda says the project will initially prove the sensor is capable of detecting very small amounts of carbon, but eventually it could be used to detect other emissions in a variety of industries.

####

About Carbon Management Canada
Carbon Management Canada (CMC-NCE) is a national network that funds research and promotes the transfer to practice of knowledge and technologies to reduce CO2 emissions in the fossil energy industry and other large stationary emitters. CMC-NCE has over 160 investigators, network agreements with 27 Canadian universities, and has invested $22 million in 44 research projects.

For more information, please click here

Contacts:
Ruth Klinkhammer
Communications Director
Carbon Management Canada
2500 – University Drive NW
Calgary, AB, Canada, T2N 1N4
T: 403.210.7879

Copyright © Carbon Management Canada

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Renishaw receives Queen's Award for spectroscopy developments November 25th, 2014

JPK reports on the use of AFM and the CellHesion module to study plant cells at the University of Queensland November 25th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Renishaw receives Queen's Award for spectroscopy developments November 25th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Academic/Education

SUNY Poly Student Awarded Fellowship with the U.S. Department of Energy's Postgraduate Research Program: Ph.D. Candidate Accepts Postmaster's Appointment To Conduct Research At Albany NanoTech Complex November 13th, 2014

SUNY Polytechnic Institute Hosts Massive Crowd of More Than 3,000 People Who Attended Community Day Activities Across New York State: CNSE’s ‘NANOvember’ kickoff event highlights New York State’s growing high-tech sector with open house events in Albany, Utica, and Rochester November 3rd, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Sensors

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Cooling with the coldest matter in the world November 24th, 2014

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Announcements

Renishaw receives Queen's Award for spectroscopy developments November 25th, 2014

JPK reports on the use of AFM and the CellHesion module to study plant cells at the University of Queensland November 25th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Environment

Iranian Experts Clean Uranium-Contaminated Water by Nano-Particles November 23rd, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Application of Nanocomposites in Production of Photocatalysts for Water Treatment November 17th, 2014

Alliances/Partnerships/Distributorships

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Field-emission plug-and-play solution for microwave electron guns: To simplify the electron emission mechanism involved in microwave electron guns, a team of researchers has created and demonstrated a field-emission plug-and-play solution based on ultrananocrystalline diamond November 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE