Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nano-sensor could improve accuracy of CO2 monitoring

Abstract:
Dr. Harry Ruda of the Centre for Nanotechnology at the University of Toronto and Dr. David Risk of St. Francis Xavier are working on single nanowire transistors that should have unprecedented sensitivity for detecting CO2 emissions.

Nano-sensor could improve accuracy of CO2 monitoring

Toronto, Canada | Posted on February 4th, 2013

Researchers at the Universities of Toronto and St. Francis Xavier are developing an affordable, energy efficient and ultra-sensitive nano-sensor that has the potential to detect even one molecule of carbon dioxide (CO2).

Current sensors used to detect CO2 at surface sites are either very expensive or they use a lot of energy. And they're not as accurate as they could be. Improving the accuracy of measuring and monitoring stored CO2 is seen as key to winning public acceptance of carbon capture and storage as a greenhouse gas mitigation method.

With funding from Carbon Management Canada (CMC-NCE), Dr. Harry Ruda of the Centre for Nanotechnology at the University of Toronto and Dr. David Risk of St. Francis Xavier are working on single nanowire transistors that should have unprecedented sensitivity for detecting CO2 emissions.

CMC-NCE, a national network that supports game-changing research to reduce CO2 emissions in the fossil energy industry as well as from other large stationary emitters, is providing Ruda and his team $350,000 over three years. The grant is part of CMC-NCE's third round of funding which saw the network award $3.75 million to Canadian researchers working on eight different projects.

The sensor technology needed to monitor and validate the amount of CO2 being emitted has not kept pace with the development of other technologies required for carbon capture and storage (CCS), says Ruda.

"This is especially true when it comes to surface monitoring verification and accounting (MVA)," he says. "Improving MVA is essential to meet the potential of carbon capture and storage."

And that's where the ultra-sensitive sensor comes in. "It's good for sounding the alarm but it's also good from a regulatory point of view because you want to able to tell people to keep things to a certain level and you need sensors to ensure accurate monitoring of industrial and subsurface environments," Ruda says.

The sensors could provide complete topographic and temporal mapping of carbon emissions, which would help in the design of new protocols for carbon storage and recovery systems as well provide the means for enforcing regulations—all of which will enable markedly reduced emissions. Risk's role will be in testing and translational work that will help embed the sensors in these real-world application environments.

"The way things behave at that nano scale is different than the traditional or micron scale," says Ruda. "We've been working in this area for nearly 20 years and we are among the leaders in developing the know-how for nano sensors."

Ruda says the project will initially prove the sensor is capable of detecting very small amounts of carbon, but eventually it could be used to detect other emissions in a variety of industries.

####

About Carbon Management Canada
Carbon Management Canada (CMC-NCE) is a national network that funds research and promotes the transfer to practice of knowledge and technologies to reduce CO2 emissions in the fossil energy industry and other large stationary emitters. CMC-NCE has over 160 investigators, network agreements with 27 Canadian universities, and has invested $22 million in 44 research projects.

For more information, please click here

Contacts:
Ruth Klinkhammer
Communications Director
Carbon Management Canada
2500 – University Drive NW
Calgary, AB, Canada, T2N 1N4
T: 403.210.7879

Copyright © Carbon Management Canada

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

Deciphering the beetle exoskeleton with nanomechanics: Understanding exoskeletons could lead to new, improved artificial materials January 12th, 2017

New laser based on unusual physics phenomenon could improve telecommunications, computing January 12th, 2017

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Sensors

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Researchers create practical and versatile microscopic optomechanical device: Trapping light and mechanical waves within a tiny bullseye, design could enable more sensitive motion detection January 11th, 2017

STMicroelectronics Peps Up Booming Social-Fitness Scene with Smart Motion Sensors for Better Accuracy, Longer Battery Life, and Faster Time to Market January 2nd, 2017

Advance in intense pulsed light sintering opens door to improved electronics manufacturing December 23rd, 2016

Announcements

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Environment

Investigating the impact of natural and manmade nanomaterials on living things: Center for Environmental Implications of Nanotechnology develops tools to assess current and future risk January 9th, 2017

PCATDES Starts Field Testing of Photocatalytic Reactors in South East Asia December 28th, 2016

Advance in intense pulsed light sintering opens door to improved electronics manufacturing December 23rd, 2016

Carbon dots dash toward 'green' recycling role: Rice scientists, colleagues use doped graphene quantum dots to reduce carbon dioxide to fuel December 18th, 2016

Alliances/Trade associations/Partnerships/Distributorships

GLOBALFOUNDRIES Expands Partner Program to Speed Time-to-Market of FDX™ Solutions: Increased support affirms FDXcelerator™ Program’s vital role in promoting broader deployment of GLOBALFOUNDRIES’ FDX™ portfolio December 15th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Leti and Grenoble Partners Demonstrate World’s 1st Qubit Device Fabricated in CMOS Process: Paper by Leti, Inac and University of Grenoble Alpes Published in Nature Communications November 28th, 2016

Mechanism for sodium storage in 2-D material: Tin selenide is an effective host for storing sodium ions, making it a promising material for sodium ion batteries October 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project