Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Dyesol and Singapore's NTU Sign Agreement

Abstract:
Australian renewable energy firm, Dyesol Limited, and the Energy Research Institute at Nanyang Technological University in Singapore have advanced their international research collaboration plans with the formal signing of their Research Collaboration Agreement.

Dyesol and Singapore's NTU Sign Agreement

Queanbeyan, Australia | Posted on January 30th, 2013

The two-year agreement will see a sharing of resources to create scalable and commercially feasible solid state Dye Solar Cell technology (DSC) technology, a low-cost renewable energy technology that operates efficiently in variable and low-light conditions.

"This collaboration is highly beneficial for both parties and leverages our complementary skill sets," said Dyesol CEO Gordon Thompson. "NTU will provide the innovation inspiration, and Dyesol will provide the development perspiration by scaling-up and testing for durability the small-scale technology that NTU will develop."

"It is a lot of work to go from a test cell to something that is industrially scalable, in terms of performance, durability, and cost, and that is where we spend more time in Australia. By working together to create scalable and commercially feasible solid state DSC we will open up a huge range of applications where we are currently limited with the materials we have," he added.

Under the agreement, NTU and Dyesol will share Intellectual Property (IP) and Dyesol will have the opportunity to take out commercialisation rights for the new IP granted under this agreement.

Executive Director, Prof. Subodh Mhaisalkar said the DSC is currently one of the most promising technologies for achieving cost efficient solar cell technologies based on earth abundant and low cost materials such as titanium dioxides.

"In the upcoming projects, we aim to optimise the solid state DSC devices, to high efficiency cells which are more reliable and more amenable to scaling and manufacturing than conventional liquid electrolyte based solar cells. Partnering with the DSC industry leader, Dyesol, is an important synergy for as we are making significant impact in the area of solar energy capture and storage."

Nanyang Technological University, a fast rising global university, has many important industry partnerships with prestigious multinational industrial leaders and academic institutions. Dyesol is a key research partner in the university's drive to tackle the important global issue of sustainable energy production for real-world applications.

The project will be overseen by the inventor of Dye Solar Cell technology, celebrated photo-chemist Professor Michael Graetzel, who is Chairman of both the Energy Research Institute at NTU's Scientific Advisory Board and Dyesol's Technical Advisory Board.

"The potential applications for solid state DSC will expand the opportunities for taking DSC out of the laboratory and into the global economy," said Professor Michael Graetzel.

DSC photovoltaic technology has the ability to be readily integrated into a number building-product, consumer and industrial applications.

####

About Dyesol Ltd
Dyesol is a global supplier of Dye Solar Cell (DSC) materials, technology and know-how. DSC is a photovoltaic technology enabling metal, glass and polymeric based products in the building, transport and electronics sectors to generate energy and improve energy efficiency. Dyesol partners with leading multinational companies who possess significant market share and established routes-to-market. The company is listed on the Australian Stock Exchange (DYE), the German Open Market (D5I), and is trading on the OTCBB (DYSOY) through its depositary BNY Mellon.

About Nanyang Technological University

A research-intensive university, NTU has 33,000 undergraduate and postgraduate students in the four colleges of Engineering, Business, Science, and Humanities, Arts & Social Sciences. The largest campus in Singapore, NTU is also home to four world-class autonomous institutes - the S Rajaratnam School of International Studies, the National Institute of Education, the Earth Observatory of Singapore and the Singapore Centre on Environmental Life Sciences Engineering, and many leading research centres such as the Nanyang Environment & Water Research Institute (NEWRI) and Energy Research Institute @ NTU A fast-growing university with an international outlook, NTU is putting its global stamp on Five Peaks of Excellence - Sustainable Earth, Future Healthcare, New Media, New Silk Road and Innovation Asia. In 2013, NTU will set up the Lee Kong Chian School of Medicine in Singapore jointly with Imperial College London. For more information, visit www.ntu.edu.sg

The Technology - DYE SOLAR CELLS

DSC technology can best be described as 'artificial photosynthesis' using an electrolyte, a layer of titania (a pigment used in white paints and tooth paste) and ruthenium dye deposited on glass, metal or polymer substrates. Light striking the dye excites electrons which are absorbed by the titania to become an electric current. Compared to conventional silicon based photovoltaic technology, Dyesol's technology has lower cost and embodied energy in manufacture, it produces electricity more efficiently even in low light conditions and can be directly incorporated into buildings by replacing conventional glass panels or metal sheets rather than taking up roof or extra land area.

For more information, please click here

Contacts:
Media & Investor Relations Contacts:
Australia
Viv Hardy
Callidus PR
Tel: +61 (2) 9283 4113
or +61 (0)411 208 951

Germany & Europe
Eva Reuter, DR Reuter
Investor Relations
Tel: +49 177 605 8804

Dyesol Headquarters
Angela Geary
Dyesol Brand Manager
Tel: +61 (0)2 6299 1592

Copyright © Dyesol Ltd

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Energy

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Industrial

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

Nature Materials: Smallest lattice structure worldwide: 3-D lattice with glassy carbon struts and braces of less than 200 nm in diameter has higher specific strength than most solids February 3rd, 2016

New sensors to combat the proliferation of bacteria in very high-humidity environments January 23rd, 2016

Alliances/Trade associations/Partnerships/Distributorships

NSS Pays Tribute to Late NSS Governor Dr. Marvin Minsky, A Pioneer in Artificial Intelligence February 11th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

Vesper Collaborates with GLOBALFOUNDRIES to Deliver First Piezoelectric MEMS Microphones: Acoustic sensing company works with top foundry to support mass-market consumer products January 21st, 2016

Imec and Cloudtag Collaborate on High Quality Frictionless Wearables for Lifestyle Coaching: Next-generation health and fitness tracker Cloudtag TrackTM launched at CES 2016 January 7th, 2016

Research partnerships

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films February 11th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Solar/Photovoltaic

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Host-guest nanowires for efficient water splitting and solar energy storage February 7th, 2016

Simplifying solar cells with a new mix of materials: Berkeley Lab-led research team creates a high-efficiency device in 7 steps January 29th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic