Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > New method of producing nanomagnets for information technology

The layer system of cobalt (bottom) and organic molecules can serve to store magnetic information that is indicated in the image by ones and zeros. The green and red arrows show the orientation of the spin.

Credit: Forschungszentrum Jülich
The layer system of cobalt (bottom) and organic molecules can serve to store magnetic information that is indicated in the image by ones and zeros. The green and red arrows show the orientation of the spin.

Credit: Forschungszentrum Jülich

Abstract:
An international team of researchers has found a new method of producing molecular magnets. Their thin layer systems made of cobalt and an organic material could pave the way for more powerful storage media as well as faster and more energy-efficient processors for information processing. The results of this research have been published in the current issue of the renowned journal Nature (DOI: 10.1038/nature11719).

New method of producing nanomagnets for information technology

Jülich, Germany | Posted on January 25th, 2013

In order to boost the performance of computers and reduce their energy requirements, processors and storage media have become smaller and smaller over the years. However, this strategy is about to reach the limits imposed by physics. Components that are too small are unstable, making them unsuitable for secure data storage and processing. One reason is that even one atom more or less can change the physical properties of components significantly that consist of only a few atoms. However, the exact number and arrangement of atoms can hardly be controlled in metals and semiconductors - the materials that electronic device components are made of today.

One way out of this dilemma could be so-called "molecular electronics", with nanometre-scale components made up of molecules. Molecules consist of a fixed number of atoms, can be designed specifically for various purposes, and can be produced cost-effectively in an identical form over and over again. If the magnetic moment of the electron - the "spin" - is also exploited in addition to its electric charge, it looks as though it may even be possible to implement entirely new functionalities, such as non-volatile RAM or quantum computers.

Molecules for such "molecular spintronics" must have specific magnetic properties. However, these properties are very sensitive and, so far, frequently become lost if the molecules are attached to inorganic materials, which are required for conducting electric current. This is why a team of researchers from Forschungszentrum Jülich, the University of Göttingen, Massachusetts Institute of Technology in the USA, Ruđer Bošković Institute in Croatia and IISER Kolkata in India pursued a new strategy exploiting the unavoidable interactions between the molecules and their substrate in a targeted manner to produce a hybrid layer that exhibits molecular magnetism and has the desired properties.

The researchers applied zinc methyl phenalenyl, or ZMP for short, a small metalorganic molecule which in itself is not magnetic, onto a magnetic layer of cobalt. They showed that ZMP forms a magnetic "sandwich" only in combination with the cobalt surface and that it can be selectively switched back and forth between two magnetic states using magnetic fields. In this process, the electrical resistance of the layer system changes by more than 20 %. In order to produce these "magnetoresistive" effects necessary to store, process, and measure data in molecular systems, researchers often required temperatures well below -200 °C.

"Our system is highly magnetoresistive at a comparatively high temperature of -20 °C. This is a considerable step forward on the way to developing molecular data storage and logic elements that work at room temperature," says Jülich scientist Dr. Nicolae Atodiresei, a theoretical physicist at the Peter Grünberg Institute and the Institute for Advanced Simulation. He and his Jülich colleagues played a major role in developing a physical model that explains the properties of this material with the help of calculations on supercomputers at Forschungszentrum Jülich.

"We now know that it is necessary for the molecule to be practically flat," says Atodiresei. "Two molecules then form a stack and attach themselves closely to the cobalt surface. The cobalt and the lower molecules then form the magnetic sandwich, while the upper molecule serves as a 'spin filter' and allows primarily those electrons to pass whose spin is suitably oriented." The orientation can be controlled by means of a magnetic field, for example. On the basis of their findings, the researchers are now planning to further optimize their sandwich system and modify it in such a way that the filter effect can also be controlled by electrical fields or light pulses.

Original publication:

Interface-engineered templates for molecular spin memory devices; K.V. Raman et al.; Nature (issue of 24.1.2013); DOI: 10.1038/nature11719

####

About Helmholtz Association of German Research Centres
The Helmholtz Association is dedicated to pursuing the long-term research goals of state and society, and to maintaining and improving the livelihoods of the population. In order to do this, the Helmholtz Association carries out top-level research to identify and explore the major challenges facing society, science and the economy. Its work is divided into six strategic research fields: Energy; Earth and Environment; Health; Key Technologies; Structure of Matter; and Aeronautics, Space and Transport. The Helmholtz Association brings together 18 scientific-technical and biological-medical research centres. With some 32,698 employees and an annual budget of approximately €3.4 billion, the Helmholtz Association is Germany’s largest scientific organisation. Its work follows in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894).

About Forschungszentrum Jülich…

... pursues cutting-edge interdisciplinary research addressing pressing issues facing society today, above all the energy supply of the future. With its competence in materials science and simulation and its expertise in physics, nanotechnology and information technology, as well as in the biosciences and brain research, Jülich is developing the basis for the key technologies of tomorrow. Forschungszentrum Jülich helps to solve the grand challenges facing society in the fields of energy and the environment, health, and information technology. With almost 5000 employees, Jülich – a member of the Helmholtz Association – is one of the large interdisciplinary research centres in Europe.

For more information, please click here

Contacts:
Angela Wenzik
science journalist
Forschungszentrum Jülich
Germany

49-246-161-6048

Dr. Nicolae Atodiresei
Quantum Theory of Materials (PGI-1/IAS-1)
Forschungszentrum
Jülich, Germany
+49 2461 61-2859

Copyright © Helmholtz Association of German Research Centres

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Forschungszentrum Jülich:

Quantum Theory of Materials (PGI-1/IAS-1):

University of Göttingen:

and:

Massachusetts Institute of Technology:

and:

and:

Ruđer Bošković Institute:

IISER Kolkata:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Memory Technology

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Interdisciplinary: Rice team tackles the future of semiconductors Multiferroics could be the key to ultralow-energy computing October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project