Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Another Tool in the Nano Toolbox: Berkeley Lab Scientists Use Electron Beam to Manipulate Nanoparticles

Moving a nanoparticle at will: this image depicts the trajectories of the electron beam movement and the overall movement of a trapped gold nanoparticle.
Moving a nanoparticle at will: this image depicts the trajectories of the electron beam movement and the overall movement of a trapped gold nanoparticle.

Abstract:
Nanotechnology, the manipulation of matter at the atomic and molecular scale, holds great promise for everything from incredibly fast computers to chemical sensors that can sniff out cancer cells. But how does one go about building a device made of parts that are one-billionth of a meter in size?



In this video from a transmission electron microscope, an electron beam traps two gold nanoparticles and drags them along.



An electron beam is used to sweep gold nanoparticles into a cluster, an approach that could lead to a new way to assemble nanostructures.

Another Tool in the Nano Toolbox: Berkeley Lab Scientists Use Electron Beam to Manipulate Nanoparticles

Berkeley, CA | Posted on January 22nd, 2013

Over the years, scientists have developed tools for this microscopic handiwork. Take for example optical tweezers, which use light to trap and move objects that measure one-millionth of a meter. Researchers use optical tweezers to manipulate biological materials such as proteins. However, using light to manipulate even smaller nanometer-scale objects is tricky business. There are other techniques for the job, but it's safe to say there's plenty of room for more tools in the nano toolbox.

Now, scientists from Berkeley Lab and the National University of Singapore have developed a way to manipulate nanoparticles using an electron beam. As recently reported, they used an electron beam from a transmission electron microscope to trap gold nanoparticles and direct their movement. They also used the beam to assemble several nanoparticles into a tight cluster. And, because the beam is from an electron microscope, they were able to image the nanoparticles as they manipulated them.

Based on their results, the scientists believe their approach could lead to a new way to build nanostructures one nanoparticle at a time.

The research was co-led by Haimei Zheng of Berkeley Lab's Materials Sciences Division. She and colleagues began by sandwiching a ten-nanometer-diameter particle of gold between two transparent silicon nitride membranes. This liquid-filled sandwich, called an environmental cell, enables objects to be imaged with a transmission electron microscope at a sub-nanometer resolution. The environmental cell was developed at Berkeley Lab.

They then passed an electron beam through the cell and trapped the nanoparticle in the beam. The nanoparticle bounced to and fro within the beam, but never escaped its confines. When they moved the beam in any direction at a speed of about ten nanometers per second, the trapped nanoparticle was dragged across the membrane surface.

Next, the scientists trapped several gold nanoparticles inside the beam and corralled them into a tight bunch by rapidly decreasing the diameter of the beam from 200 nanometers to 50 nanometers. They also moved the cluster of nanoparticles over the membrane surface by moving the electron beam.

Zheng and colleagues are now working to understand how the electron beam traps the nanoparticles. They also want to develop ways to automate the positioning and movement of nanoparticles, which is a key step toward the fast and efficient assembly of nanostructures.

####

About Berkeley Lab
A U.S. Department of Energy National Laboratory Operated by the University of California

For more information, please click here

Contacts:
Dan Krotz

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Nanosafety research – there’s room for improvement October 29th, 2014

Laboratories

Tiny carbon nanotube pores make big impact October 29th, 2014

Govt.-Legislation/Regulation/Funding/Policy

'Electronic skin' could improve early breast cancer detection October 29th, 2014

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Nanomedicine

'Electronic skin' could improve early breast cancer detection October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Molecular beacons shine light on how cells 'crawl' October 27th, 2014

New nanodevice to improve cancer treatment monitoring October 27th, 2014

Discoveries

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Nanoparticles Display Ability to Improve Efficiency of Filters October 28th, 2014

Announcements

New solar power material converts 90 percent of captured light into heat: SunShot Project aims to make solar cost competitive October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

Nanosafety research – there’s room for improvement October 29th, 2014

Tools

A new cheap and efficient method to improve SERS, an ultra-sensitive chemical detection technique October 28th, 2014

New Compact SIMS at 61st AVS | Visit us on Booth 311 October 28th, 2014

New nanodevice to improve cancer treatment monitoring October 27th, 2014

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

Nanobiotechnology

Tiny carbon nanotube pores make big impact October 29th, 2014

Molecular beacons shine light on how cells 'crawl' October 27th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE