Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Another Tool in the Nano Toolbox: Berkeley Lab Scientists Use Electron Beam to Manipulate Nanoparticles

Moving a nanoparticle at will: this image depicts the trajectories of the electron beam movement and the overall movement of a trapped gold nanoparticle.
Moving a nanoparticle at will: this image depicts the trajectories of the electron beam movement and the overall movement of a trapped gold nanoparticle.

Abstract:
Nanotechnology, the manipulation of matter at the atomic and molecular scale, holds great promise for everything from incredibly fast computers to chemical sensors that can sniff out cancer cells. But how does one go about building a device made of parts that are one-billionth of a meter in size?



In this video from a transmission electron microscope, an electron beam traps two gold nanoparticles and drags them along.



An electron beam is used to sweep gold nanoparticles into a cluster, an approach that could lead to a new way to assemble nanostructures.

Another Tool in the Nano Toolbox: Berkeley Lab Scientists Use Electron Beam to Manipulate Nanoparticles

Berkeley, CA | Posted on January 22nd, 2013

Over the years, scientists have developed tools for this microscopic handiwork. Take for example optical tweezers, which use light to trap and move objects that measure one-millionth of a meter. Researchers use optical tweezers to manipulate biological materials such as proteins. However, using light to manipulate even smaller nanometer-scale objects is tricky business. There are other techniques for the job, but it's safe to say there's plenty of room for more tools in the nano toolbox.

Now, scientists from Berkeley Lab and the National University of Singapore have developed a way to manipulate nanoparticles using an electron beam. As recently reported, they used an electron beam from a transmission electron microscope to trap gold nanoparticles and direct their movement. They also used the beam to assemble several nanoparticles into a tight cluster. And, because the beam is from an electron microscope, they were able to image the nanoparticles as they manipulated them.

Based on their results, the scientists believe their approach could lead to a new way to build nanostructures one nanoparticle at a time.

The research was co-led by Haimei Zheng of Berkeley Lab's Materials Sciences Division. She and colleagues began by sandwiching a ten-nanometer-diameter particle of gold between two transparent silicon nitride membranes. This liquid-filled sandwich, called an environmental cell, enables objects to be imaged with a transmission electron microscope at a sub-nanometer resolution. The environmental cell was developed at Berkeley Lab.

They then passed an electron beam through the cell and trapped the nanoparticle in the beam. The nanoparticle bounced to and fro within the beam, but never escaped its confines. When they moved the beam in any direction at a speed of about ten nanometers per second, the trapped nanoparticle was dragged across the membrane surface.

Next, the scientists trapped several gold nanoparticles inside the beam and corralled them into a tight bunch by rapidly decreasing the diameter of the beam from 200 nanometers to 50 nanometers. They also moved the cluster of nanoparticles over the membrane surface by moving the electron beam.

Zheng and colleagues are now working to understand how the electron beam traps the nanoparticles. They also want to develop ways to automate the positioning and movement of nanoparticles, which is a key step toward the fast and efficient assembly of nanostructures.

####

About Berkeley Lab
A U.S. Department of Energy National Laboratory Operated by the University of California

For more information, please click here

Contacts:
Dan Krotz

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

SEMATECH to Showcase Innovation and Advances in Manufacturing at SEMICON Japan 2014: SEMATECH experts will share the latest techniques, emerging trends and best practices in advanced manufacturing strategies and methodologies November 26th, 2014

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts November 26th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Laboratories

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

NRL Scientists Discover Novel Metamaterial Properties within Hexagonal Boron Nitride November 20th, 2014

Brookhaven Science Associates Awarded Brookhaven Lab Management Contract Battelle/Stony Brook University partnership retains contract it has held since 1998 November 13th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Renishaw receives Queen's Award for spectroscopy developments November 25th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Nanomedicine

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research reveals how our bodies keep unwelcome visitors out of cell nuclei November 24th, 2014

ASU, IBM move ultrafast, low-cost DNA sequencing technology a step closer to reality November 24th, 2014

An Inside Job: UC-Designed Nanoparticles Infiltrate, Kill Cancer Cells From Within November 24th, 2014

Discoveries

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Vegetable oil ingredient key to destroying gastric disease bacteria: In mice, therapeutic nanoparticles dampen H. pylori bacteria and inflammation that lead to ulcers and gastric cancer November 25th, 2014

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Announcements

SEMATECH to Showcase Innovation and Advances in Manufacturing at SEMICON Japan 2014: SEMATECH experts will share the latest techniques, emerging trends and best practices in advanced manufacturing strategies and methodologies November 26th, 2014

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts November 26th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Tools

Renishaw receives Queen's Award for spectroscopy developments November 25th, 2014

JPK reports on the use of AFM and the CellHesion module to study plant cells at the University of Queensland November 25th, 2014

A*STAR SIMTech wins international award for breaking new ground in actuators: SIMTech invention can be used in an array of industries, and is critical for next generation ultra-precision systems November 24th, 2014

Professional AFM Images with a Three Step Click SmartScan by Park Systems Revolutionizes Atomic Force Microscopy by Automatizing the Imaging Process November 24th, 2014

Nanobiotechnology

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Tokyo Institute of Technology research: Protein-engineered cages aid studies of cell functions November 19th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Implementation of DNA Chains in Designing Nanospin Pieces November 9th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE