Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Dye Sensitized Solar Cells Show Higher Performance with Bi-Layer Titanium Dioxide Nanostructures

Abstract:
Iranian researchers from Sharif University of Technology, in association with Cambridge University in Britain, successfully fabricated titanium dioxide dye sensitized solar cells (DSSCs).

Dye Sensitized Solar Cells Show Higher Performance with Bi-Layer Titanium Dioxide Nanostructures

Tehran, Iran | Posted on January 20th, 2013

The solar cells were produced in the form of bi-layer films with different crystalline structures and various morphologies of titanium dioxide nanostructures.

In order to obtain high conversion yield in solar cells, it is necessary to collect ion carriers produced by photons as electrical current before their re-combination. The collection of ion carriers must be carried out significantly faster than the re-combination. A promising solution is to increase the electron emission length in photo-anode electrode made of titanium dioxide nanoparticles with its one-dimensional nanostructures.

Morphology, crystalline structure and optical energy band gap are among the effective parameters on titanium dioxide film in electron transfer rate and the re-combination process of bi-layer DSSCs. Therefore, the researchers systematically studied titanium dioxide dye-sensitized solar cells with single layer and bi-layer film structures with various morphologies and crystalline phases. By measuring the inner resistance of cells, electron life-time, and electron transfer time, they also investigated the modification of their mechanism by using electrochemical impedance spectrometry (EIS).

Results showed that the bi-layer solar cells have higher fill factor rather than single layer cells with the same crystalline structure. In addition, the both single layer and bi-layer solar cells made of titanium dioxide with anatase crystalline structure have higher fill factor and power conversion yield in comparison to the cells consisted of rutile crystalline structure.

Results of the research have been published in September 2012 in Electrochimica Acta, vol. 78. For more information about the detail of the research, visit the full text of the article on pages 384-391 of the same journal.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

President Obama Meets U.S. Laureates of 2014 Kavli Prizes August 1st, 2014

Stanford researchers seek 'Holy Grail' in battery design: Pure lithium anode closer to reality with development of protective layer of interconnected carbon domes August 1st, 2014

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

Discoveries

Iranian Scientists Produce Cobalt–Alumina Ceramic Nano Inks August 1st, 2014

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

Taking the guesswork out of cancer therapy: New molecular test kit predicts patient’s survival and drug response August 1st, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Announcements

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

President Obama Meets U.S. Laureates of 2014 Kavli Prizes August 1st, 2014

Stanford researchers seek 'Holy Grail' in battery design: Pure lithium anode closer to reality with development of protective layer of interconnected carbon domes August 1st, 2014

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

Energy

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

From Narrow to Broad July 30th, 2014

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

Solar/Photovoltaic

From Narrow to Broad July 30th, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

Making dreams come true: Making graphene from plastic? July 2nd, 2014

Shrinky Dinks close the gap for nanowires July 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE