Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Dye Sensitized Solar Cells Show Higher Performance with Bi-Layer Titanium Dioxide Nanostructures

Abstract:
Iranian researchers from Sharif University of Technology, in association with Cambridge University in Britain, successfully fabricated titanium dioxide dye sensitized solar cells (DSSCs).

Dye Sensitized Solar Cells Show Higher Performance with Bi-Layer Titanium Dioxide Nanostructures

Tehran, Iran | Posted on January 20th, 2013

The solar cells were produced in the form of bi-layer films with different crystalline structures and various morphologies of titanium dioxide nanostructures.

In order to obtain high conversion yield in solar cells, it is necessary to collect ion carriers produced by photons as electrical current before their re-combination. The collection of ion carriers must be carried out significantly faster than the re-combination. A promising solution is to increase the electron emission length in photo-anode electrode made of titanium dioxide nanoparticles with its one-dimensional nanostructures.

Morphology, crystalline structure and optical energy band gap are among the effective parameters on titanium dioxide film in electron transfer rate and the re-combination process of bi-layer DSSCs. Therefore, the researchers systematically studied titanium dioxide dye-sensitized solar cells with single layer and bi-layer film structures with various morphologies and crystalline phases. By measuring the inner resistance of cells, electron life-time, and electron transfer time, they also investigated the modification of their mechanism by using electrochemical impedance spectrometry (EIS).

Results showed that the bi-layer solar cells have higher fill factor rather than single layer cells with the same crystalline structure. In addition, the both single layer and bi-layer solar cells made of titanium dioxide with anatase crystalline structure have higher fill factor and power conversion yield in comparison to the cells consisted of rutile crystalline structure.

Results of the research have been published in September 2012 in Electrochimica Acta, vol. 78. For more information about the detail of the research, visit the full text of the article on pages 384-391 of the same journal.

####

For more information, please click here

Copyright © Fars News Agency

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

New Product Nanoparticle preparation from Intertronics with new Thinky NP-100 Nano Pulveriser April 26th, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Affordable STM32 Cloud-Connectable Kit from STMicroelectronics Puts More Features On-Board for Fast and Flexible IoT-Device Development April 26th, 2017

Discoveries

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Announcements

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

New Product Nanoparticle preparation from Intertronics with new Thinky NP-100 Nano Pulveriser April 26th, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Affordable STM32 Cloud-Connectable Kit from STMicroelectronics Puts More Features On-Board for Fast and Flexible IoT-Device Development April 26th, 2017

Energy

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

Solar/Photovoltaic

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

Controlling forces between atoms, molecules, promising for ‘2-D hyperbolic’ materials April 4th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project