Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Black silicon can take efficiency of solar cells to new levels

SEM image of the Al2O3 coated CZ Si surface with b-Si where a thin Al2O3 layer can be seen on top of the nanostructure.
SEM image of the Al2O3 coated CZ Si surface with b-Si where a thin Al2O3 layer can be seen on top of the nanostructure.

Abstract:
Scientists at Aalto University, Finland, have demonstrated results that show a huge improvement in the light absorption and the surface passivation on silicon nanostructures. This has been achieved by applying atomic layer coating. The results advance the development of devices that require high sensitivity light response such as high efficiency solar cells.

Black silicon can take efficiency of solar cells to new levels

Aalto, Finland | Posted on January 19th, 2013

- This method provides extremely good surface passivation. Simultaneously, it reduces the reflectance further at all wavelengths. These results are very promising considering the use of black silicon (b-Si) surfaces on solar cells to increase the efficiency to completely new levels, tells Päivikki Repo, a researcher at Aalto University.

More effective surface passivation methods than those used in the past have been needed to make black silicon a viable material for commercial applications. Good surface passivation is crucial in photonic applications such as solar cells. So far, the poor charge carrier transport properties attributed to nanostructured surfaces have been more detrimental for the final device operation than the gain obtained from the reduced reflectance.

Black silicon can also be used in other technologies than solar cells. Numerous applications suggested for b-Si include drug analysis.

Black silicon (b-Si) has been a subject of great interest in various fields including photovoltaics for its ability to reduce the surface reflectance even below 1 per cent. However, many b-Si applications - especially solar cells - suffer from increased surface recombination resulting in poor spectral response. This is particularly problematic at short wavelengths.

The research has just been published in the Journal of Photovoltaics. The research is carried out by Aalto University, Finland, together with experts from Fraunhofer Institute for Solar Energy Systems ISE.

####

About Aalto University
Aalto University, Finland is a new multidisciplinary science and art community in the fields of science, economics, and art and design. The University is founded on Finnish strengths, and its goal is to develop as a unique entity to become one of the world's top universities. Aalto University's cornerstones are its strengths in education and research. At the new University, there are 20,000 basic degree and graduate students as well as a staff of 5,000 of which 350 are professors.

For more information, please click here

Contacts:
Päivikki Repo
Aalto University
+358 504361156

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Full bibliographic informationEffective Passivation of Black Silicon Surfaces by Atomic Layer Deposition, P. Repo, A. Haarahiltunen, L. Sainiemi, M. Yli-Koski, H. Talvitie, M. C. Schubert, and H. Savin pp. 90-94, IEEE Journal of Photovoltaics, JPV January 2013, DOI: 10.1109/JPHOTOV.2012.2210031:

Related News Press

News and information

Researchers find new way to control light with electric fields May 25th, 2017

Nanometrics Announces Retirement Plans of CEO Timothy Stultz: Dr. Stultz to Continue as Director May 25th, 2017

Nanomechanics, Inc. to Exhibit at the SEM Conference: Nanoindentation experts will attend and exhibit their instruments at the Conference and Exposition on Experimental and Applied Mechanics in Indianapolis May 25th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Discoveries

Researchers find new way to control light with electric fields May 25th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Announcements

Researchers find new way to control light with electric fields May 25th, 2017

Nanometrics Announces Retirement Plans of CEO Timothy Stultz: Dr. Stultz to Continue as Director May 25th, 2017

Nanomechanics, Inc. to Exhibit at the SEM Conference: Nanoindentation experts will attend and exhibit their instruments at the Conference and Exposition on Experimental and Applied Mechanics in Indianapolis May 25th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Energy

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

Solar/Photovoltaic

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project