Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > PVA Tepla and imec Demonstrate 3D Through-Silicon via (TSV) Void Detection using GHz Scanning acoustic microscopy

Abstract:
Scanning acoustic microscopy (SAM) for non-destructive void inspection after wafer bonding improves wafer thinning performance and tool stability and can also be applied to detect voids in TSVs during processing.

PVA Tepla and imec Demonstrate 3D Through-Silicon via (TSV) Void Detection using GHz Scanning acoustic microscopy

Leuven, Belgium | Posted on January 17th, 2013

Imec and PVA Tepla present breakthrough results in the detection of TSV voids in 3D stacked IC technology. After having applied Scanning Acoustic Microscopy to temporary wafer (de)bonding inspection, they successfully used new advanced GHz SAM technology to detect TSV voids at wafer-level after TSV Copper plating. Together, they will continue to investigate the applicability of high-frequency scanning acoustic microscopy for non-destructive submicron void detection.

The initial focus of the collaboration was on developing metrology aimed at detecting voids after temporary wafer bonding, allowing for proper rework of 3D wafers. Temporary wafer (de)bonding and thin wafer handling remains challenging for 3D stacked IC technology. The development of interface particles and voids during the temporary bonding process has a detrimental impact on the subsequent wafer thinning process steps, affecting the wafer thinning performance as well as long-term tool stability and performance. PVA Tepla and imec have developed an automated foup-to-foup, wafer-level process based on 200MHz Scanning Acoustic Microscopy (SAM) using Tepla's AutoWafer 300 tool.

After demonstrating non-destructive detection of interface particles and voids, imec used PVA Tepla's high-resolution capability GHz frequency SAM tool to successfully detect voids in TSVs of 5m diameter and 50m depth, immediately after plating. Future work will concentrate on further refining the process and implementing GHz SAM capability to increase the spatial detection resolution. Moreover, imec and PVA Tepla will investigate the applicability of GHz SAM to detect submicron voids in TSV and to investigate other aspects related to 3D-technology such as bump connection quality.

####

About IMEC
Imec performs world-leading research in nanoelectronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society. Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China, India and Japan. Its staff of close to 2,000 people includes more than 600 industrial residents and guest researchers. In 2011, imec's revenue (P&L) was about 300 million euro. Further information on imec can be found at www.imec.be.

Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a "stichting van openbaar nut), imec Belgium (IMEC vzw supported by the Flemish Government), imec the Netherlands (Stichting IMEC Nederland, part of Holst Centre which is supported by the Dutch Government), imec Taiwan (IMEC Taiwan Co.) and imec China (IMEC Microelectronics (Shangai) Co. Ltd.) and imec India (Imec India Private Limited).

About PVA TePla

PVA TePla Analytical Systems GmbH is a member of the PVA TePla AG group. The company develops advanced technology developments in scanning acoustic microscopy and provides innovative analytical solutions for applications in material science, biology, inspection of solar and semiconductor systems, as well as for defect analysis in ingots for the production of wafers and MEMS systems.

PVA TePla Group is a specialist for high-temperature and vacuum furnaces. Its core competencies are in the fields of hard-metal sintering and crystal growing, the application of plasma systems for surface activation and ultra-fine cleaning as well as the application of inspection systems for high tech materials.

For more information, please click here

Contacts:
imec :
Hanne Degans
External Communications Officer
T: +32 16 28 17 69
Mobile: +32 486 065 175


PVA TePla:
Sandy Kolbe
Executive Assistance
T: +49 (0)7363 9544 200


Olga Walsh
Business Technology
[ f o r m u l a ]
Formula PR, Inc.
1215 Cushman Avenue
San Diego, CA 92110
Office 619-234-0345 |

Copyright © IMEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Eric Berger Wins the National Space Society's 2017 Space Pioneer Award for Mass Media January 19th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Imaging

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

First use of graphene to detect cancer cells: System able to detect activity level of single interfaced cell December 20th, 2016

Chip Technology

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Discoveries

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Announcements

Eric Berger Wins the National Space Society's 2017 Space Pioneer Award for Mass Media January 19th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Tools

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanomechanics Inc. Continues Growth in Revenue and Market Penetration: Leading nanoindentation company reports continued growth in revenues and distribution channels on national and international scales December 27th, 2016

Nanometrics to Present at the 19th Annual Needham Growth Conference December 22nd, 2016

Research partnerships

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

Zeroing in on the true nature of fluids within nanocapillaries: While exploring the behavior of fluids at the nanoscale, a group of researchers at the French National Center for Scientific Research discovered a peculiar state of fluid mixtures contained in microscopic channels January 11th, 2017

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project