Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Using snail teeth to improve solar cells and batteries: Assistant professor David Kisailus studies the chiton, a marine snail found off the coast of California, to develop nanoscale materials for energy applications

The underside of a gumboot chiton in the lab of David Kisailus.
The underside of a gumboot chiton in the lab of David Kisailus.

Abstract:
An assistant professor at the University of California, Riverside's Bourns College of Engineering is using the teeth of a marine snail found off the coast of California to create less costly and more efficient nanoscale materials to improve solar cells and lithium-ion batteries.

Using snail teeth to improve solar cells and batteries: Assistant professor David Kisailus studies the chiton, a marine snail found off the coast of California, to develop nanoscale materials for energy applications

Riverside, CA | Posted on January 16th, 2013

The most recent findings by David Kisailus, an assistant professor of chemical and environmental engineering, details how the teeth of chiton grow. The paper was published today (Jan. 16) in the journal Advanced Functional Materials. It was co-authored by several of his current and former students and scientists at Harvard University in Cambridge Mass., Chapman University in Orange, Calif. and Brookhaven National Laboratory in Upton, NY.

The paper is focused on the gumboot chiton, the largest type of chiton, which can be up to a foot-long. They are found along the shores of the Pacific Ocean from central California to Alaska. They have a leathery upper skin, which is usually reddish-brown and occasionally orange, leading some to give it the nickname "wandering meatloaf."

Over time, chitons have evolved to eat algae growing on and within rocks using a specialized rasping organ called a radula, a conveyer belt-like structure in the mouth that contains 70 to 80 parallel rows of teeth. During the feeding process, the first few rows of the teeth are used to grind rock to get to the algae. They become worn, but new teeth are continuously produced and enter the "wear zone" at the same rate as teeth are shed.

Kisailus, who uses nature as inspiration to design next generation engineering products and materials, started studying chitons five years ago because he was interested in abrasion and impact-resistant materials. He has previously determined that the chiton teeth contain the hardest biomineral known on Earth, magnetite, which is the key mineral that not only makes the tooth hard, but also magnetic.

In the just-published paper, "Phase transformations and structural developments in the radular teeth of Cryptochiton stelleri," Kisailus set out to determine how the hard and magnetic outer region of the tooth forms.

His work revealed this occurs in three steps. Initially, hydrated iron oxide (ferrihydrite) crystals nucleate on a fiber-like chitinous (complex sugar) organic template. These nanocrystalline ferrihydrite particles convert to a magnetic iron oxide (magnetite) through a solid-state transformation. Finally, the magnetite particles grow along these organic fibers, yielding parallel rods within the mature teeth that make them so hard and tough.

"Incredibly, all of this occurs at room temperature and under environmentally benign conditions," Kisailus said. "This makes it appealing to utilize similar strategies to make nanomaterials in a cost-effective manner."

Kisailus is using the lessons learned from this biomineralization pathway as inspiration in his lab to guide the growth of minerals used in solar cells and lithium-ion batteries. By controlling the crystal size, shape and orientation of engineering nanomaterials, he believes he can build materials that will allow the solar cells and lithium-ion batteries to operate more efficiently. In other words, the solar cells will be able to capture a greater percentage of sunlight and convert it to electricity more efficiently and the lithium-ion batteries could need significantly less time to recharge.

Using the chiton teeth model has another advantage: engineering nanocrystals can be grown at significantly lower temperatures, which means significantly lower production costs.

While Kisailus is focused on solar cells and lithium-ion batteries, the same techniques could be used to develop everything from materials for car and airplane frames to abrasion resistant clothing. In addition, understanding the formation and properties of the chiton teeth could help to create better design parameters for better oil drills and dental drill bits.

Co-authors of the Advanced Functional Materials paper were: Qianqian Wang, Michiko Nemoto, Dongsheng Li, Garrett W. Milliron, Brian Weden, Leslie R. Wood, all of whom are current or former undergraduate and graduate students at UC Riverside; James C. Weaver, a former post-doc of Kisailus, now at Harvard University; John Stegemeier and Christopher S. Kim, of Chapman University; and Elaine DiMasi, of Brookhaven National Laboratory.

####

About University of California - Riverside
The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus will open a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

For more information, please click here

Contacts:
Sean Nealon

951-827-1287

Twitter: seannealon
Additional Contacts

David Kisailus
Tel: 951-827-2260

Copyright © University of California - Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Journal article:

Related News Press

Laboratories

NREL Announces New Center Directors to lead R&D, Analysis Efforts September 30th, 2014

News and information

NREL Announces New Center Directors to lead R&D, Analysis Efforts September 30th, 2014

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

Speed at its limits September 30th, 2014

Research mimics brain cells to boost memory power September 30th, 2014

Videos/Movies

Smallest possible diamonds form ultra-thin nanothreads: Diamond nanothreads are likely to have extraordinary properties, including strength and stiffness greater than that of today's strongest nanotubes and polymers September 22nd, 2014

Next-Gen Luxury RV From Global Caravan Technologies Will Offer MagicView Roof and Windshield Using SPD-SmartGlass Technology From Research Frontiers: Recreational Vehicle Manufacturer Global Caravan Technologies (GCT) Features 28 Square Feet of MagicView™ SPD-SmartGlass September 17th, 2014

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

Govt.-Legislation/Regulation/Funding/Policy

NREL Announces New Center Directors to lead R&D, Analysis Efforts September 30th, 2014

A Heartbeat Away? Hybrid "Patch" Could Replace Transplants: TAU researcher harnesses gold nanoparticles to engineer novel biocompatible cardiac patch September 30th, 2014

How things coil: Researchers discover that simulation technology designed for Hollywood can be used as a predictive tool for understanding fundamental engineering problems September 29th, 2014

UT Arlington researchers develop transparent nanoscintillators for radiation detection for medical safety and homeland security September 29th, 2014

Discoveries

Research mimics brain cells to boost memory power September 30th, 2014

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

Announcements

Park Systems Announces Outsourced Analytical Services Including AFM Surface Imaging, Data Analysis and Interpretation September 30th, 2014

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Speed at its limits September 30th, 2014

Ad-REIC vaccine: A magic bullet for cancer treatment September 30th, 2014

New Topical Hemostatic Agent: Neutral Self-Assembling Peptide Hydrogel September 30th, 2014

Chemical interactions between silver nanoparticles and thiols: A comparison of mercaptohexanol again September 30th, 2014

Energy

Production of Anticorrosive Chromate Nanocoatings in Iran September 27th, 2014

University of Electro-Communications research: High density quantum dots for powerful solar cells September 25th, 2014

On the Road to Artificial Photosynthesis: Berkeley Lab Study Reveals Key Catalytic Factors in Carbon Dioxide Reduction September 25th, 2014

Solar cell compound probed under pressure September 25th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics

Graphene and Amaranthus Superparamagnets: Breakthrough nanoparticles discovery of Indian researcher September 23rd, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

NEI Corporation and PneumatiCoat Technologies Sign Agreement to Jointly Develop and Market New Materials for Lithium-ion Batteries September 12th, 2014

Research partnerships

Research mimics brain cells to boost memory power September 30th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Teijin Aramid’s carbon nanotube fibers awarded with Paul Schlack prize: New generation super fibers bring wave of innovations to fiber market September 25th, 2014

Smallest-possible diamonds form ultra-thin nanothread September 25th, 2014

Solar/Photovoltaic

University of Electro-Communications research: High density quantum dots for powerful solar cells September 25th, 2014

On the Road to Artificial Photosynthesis: Berkeley Lab Study Reveals Key Catalytic Factors in Carbon Dioxide Reduction September 25th, 2014

Solar cell compound probed under pressure September 25th, 2014

Quick Method Found for Synthesis of Organic Compounds with Less Pollution September 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE