Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Graphene plasmonics beats the drug cheats

Abstract:
Writing in Nature Materials, the scientists, working with colleagues from Aix-Marseille University, have created a device which potentially can see one molecule though a simple optical system and can analyse its components within minutes. This uses plasmonics - the study of vibrations of electrons in different materials.

Graphene plasmonics beats the drug cheats

Manchester, UK | Posted on January 13th, 2013

The breakthrough could allow for rapid and more accurate drug testing for professional athletes as it could detect the presence of even trace amounts of a substance.

It could also be used at airports or other high-security locations to prevent would-be terrorists from concealing explosives or traffickers from smuggling drugs. Another possible use could be detecting viruses people might be suffering from.

Graphene, isolated for the first time at The University of Manchester in 2004, has the potential to revolutionise diverse applications from smartphones and ultrafast broadband to drug delivery and computer chips.

It has the potential to replace existing materials, such as silicon, but University of Manchester researchers believe it could truly find its place with new devices and materials yet to be invented.

The researchers, lead by Dr Sasha Grigorenko, suggested a new type of sensing devices: artificial materials with topological darkness. The devices show extremely high response to an attachment of just one relatively small molecule. This high sensitivity relies on topological properties of light phase.

To test their devices, researches covered them with graphene. They then introduced hydrogen onto the graphene, which allowed them to calibrate their devices with far superior sensitivity than with any other material.

Testing for toxins or drugs could be done using a simple blood test, with highly-accurate results in minutes. The researchers found that the sensitivity of their devices is three orders of magnitude better than that of existing models.

The academics, from the School of Physics and Astronomy, hope the research will show the practical applications from an emerging area of research - singular optics.

Dr Grigorenko said: "The whole idea of this device is to see single molecules, and really see them, under a simple optical system, say a microscope.

"The singular optics which utilise the unusual phase properties of light is a big and emerging field of research, and we have shown how it can have practical applications which could be of great benefit.

"Graphene was one of the best materials we could have used to measure the sensitivity of these molecules. It is so easy to put the hydrogen on to it in controlled way.

"We are only starting to scratch the surface of what this research might tell us but it could have profound implications for drug detection, security and viruses."

Professor Andre Geim and Professor Kostya Novoselov won the Nobel prize for Physics in 2010 for their groundbreaking work on graphene.

####

For more information, please click here

Contacts:
Daniel Cochlin

44-161-275-8387

Copyright © Universitiy of Manchester

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

State-of-the-art online system unveiled to pinpoint metrology software accuracy March 27th, 2015

Law enforcement/Anti-Counterfeiting/Security/Loss prevention

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Graphene

Graphene reduces wear of alumina ceramic March 26th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

Application of Graphene Oxide in Body Implants in Iran March 26th, 2015

Haydale Announce Dedicated Graphene Inks Manufacturing Capability March 25th, 2015

Nanomedicine

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Graphene reduces wear of alumina ceramic March 26th, 2015

Application of Graphene Oxide in Body Implants in Iran March 26th, 2015

Nanorobotic agents open the blood-brain barrier, offering hope for new brain treatments March 25th, 2015

Announcements

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE