Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > News from the world of quantum physics: A non-causal quantum eraser

This is a long time exposure photography viewing from Tenerife to La Palma. A green laser beam indicates the free-space link between the two laboratories.

Credit: IQOQI Vienna
This is a long time exposure photography viewing from Tenerife to La Palma. A green laser beam indicates the free-space link between the two laboratories.

Credit: IQOQI Vienna

Abstract:
Whether a quantum object behaves like a wave or like a particle depends (according to the Copenhagen interpretation) on the choice of measurement apparatus used for observing the system, and therefore on the type of measurement performed.

News from the world of quantum physics: A non-causal quantum eraser

Vienna, Austria | Posted on January 9th, 2013

Anton Zeilinger's team of physicists at the University of Vienna and the Austrian Academy of Sciences has recently taken this phenomenon further than ever. Whether a certain photon behaves like a particle or like a wave depends on the measurement performed on a second photon. In the new experiment, this second photon is so far separated from the first photon that no transfer of information whatsoever (the velocity of which can never exceed the speed of light) would be fast enough. Yet, the first photon behaves like a wave or like a particle, still depending on the measurement performed on the second. While the results of such experiments are fully consistent with quantum physics, a clear explanation in terms of causality is impossible, as, according to Einstein's relativity theory, any transfer of information is limited to the speed of light. The science article "Quantum erasure with causally disconnected choice" has appeared in the current issue of the renowned science journal Proceedings of the National Academy of Sciences (PNAS).

The basis: the delayed choice experiment

Gedanken experiments on the foundations of quantum mechanics have a long history. Such thought experiments were developed to play through and discuss the behavior of single particles, which contradict both classical physics and common sense, at least theoretically. One milestone was the 1978 delayed-choice experiment by Einstein's last collaborator John Wheeler. In this gedanken experiment, a single photon has two paths it could take in an interferometer. In its wave character, the photon will take both paths simultaneously. In its particle character, the photon needs to decide which of the two paths it will take. Wheeler proved, in accordance with quantum mechanics, that the decision whether the photon will behave as a wave or as a particle can be taken after even after it has already entered the interferometer.

The quantum eraser

The so-called quantum eraser, presented in 1982 by Marlan Scully and Kai Drühl, turned out to be another milestone. A quantum mechanically entangled pair of one photon and one atom is created. The atom can take two paths, emitting the photon in the process. By measuring the photon, it can now be determined which of the two paths the atom has taken. If we now measure the photon in such a way that it becomes fundamentally impossible to determine the atom's path, as a consequence, the information about which path the atom has taken is, so to speak, erased. The atom then exhibits phenomena which can only be explained by its taking both paths, as a wave.

Vienna quantum physicists turn off the causality factor in experiment

The two ideas, delayed choice and quantum eraser, have been realized in experiment both separately and in combination. In all past experiments, the possibility that the choice of measurement has a causal influence on the actual observation (by transmission of information slower than light) still remained, if only in principle.

In the two new experiments, one of which was performed in Vienna and one on the Canary Islands, this remaining possibility of a causal explanation was now ruled out. The researchers created a pair of photons, one of which was sent through two glass fibers while the other was sent to a different laboratory, 50 meters away in Vienna and 144 km distant on the Canary Islands. The second photon was entangled with the first in such a way that by measuring its polarization (horizontal or vertical), it was possible to determine which path the first one had taken. If the second photon's polarization was measured at 45 degrees, no deduction on the path of the first photon was possible, which then, as a wave, took both paths. The decision of which measurement to perform on the second photon was realized by means of a high-speed random number generator. In both experiments, also in the case of the 144 km long optical free space connection from La Palma to Tenerife across the Atlantic, the choice of polarization measurement at the Tenerife photon was completely separated causally from its twin in La Palma. And yet, the photon on La Palma behaved like a particle or like a wave, according to the Tenerife measurement.

"This rules out the possibility of any physical signal between the two photons. Introducing this non-causal choice is a substantial step beyond existing quantum eraser experiments, where such communication is still possible in principle", explains Xiao-Song Ma, the first author of the current article.

Consequently, the experiment can be seen as a complete realization of the quantum eraser concept, not via delayed choice (which theoretically might be influenced by past events) but using a causally separated choice (by rendering any causal influence impossible).

"Our work disproves the view that a quantum system might, at a certain point in time, appear definitely as a wave or definitely as a particle. This would require communication faster than light - which is dramatically at odds with Einstein's theory of relativity. And so, I think that this view needs to be abandoned completely. In a certain sense, quantum events are independent from space and time", says Anton Zeilinger.

####

For more information, please click here

Contacts:
Anton Zeilinger

43-142-775-1201

Copyright © University of Vienna

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Physics

Polar vortices observed in ferroelectric: New state of matter holds promise for ultracompact data storage and processing February 4th, 2016

The quantum fridge: It all comes down to quantum physics: scientists at TU Wien have analyzed why some gases can be cooled down to extremely low temperatures February 2nd, 2016

Unconventional superconductivity near absolute zero temperature: Quantum critical point could be the reason for high temperature superconductivity February 2nd, 2016

Electrons and liquid helium advance understanding of zero-resistance: Study of electrons on liquid helium systems sheds light on zero-resistance phenomenon in semiconductors February 2nd, 2016

Discoveries

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Announcements

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Organic crystals allow creating flexible electronic devices: The researchers from the Faculty of Physics of the Moscow State University have grown organic crystals that allow creating flexible electronic devices February 5th, 2016

Quantum nanoscience

Spin dynamics in an atomically thin semi-conductor February 1st, 2016

New record in nanoelectronics at ultralow temperatures January 28th, 2016

Leti to Host Workshop on New Photonics Applications During SPIE Photonics West: Researchers also Will Present Four Invited Papers At Feb. 13-18 Conference, 14 Papers, Overall January 25th, 2016

Mechanical quanta see the light January 20th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic