Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Bottom-up approach provides first characterization of pyroelectric nanomaterials

Using a high-power, pulsed laser to deposit materials from a plasma plume (shown here), researchers synthesized materials to study their unique pyroelectric properties at the nanoscale.
Using a high-power, pulsed laser to deposit materials from a plasma plume (shown here), researchers synthesized materials to study their unique pyroelectric properties at the nanoscale.

Abstract:
By taking a "bottom-up" approach, researchers at the University of Illinois at Urbana-Champaign have observed for the first time that "size does matter" in regards "pyroelectricity"—the current/voltage developed in response to temperature fluctuations that enables technologies such as infrared sensors, night-vision, and energy conversion units, to name a few.

Bottom-up approach provides first characterization of pyroelectric nanomaterials

Urbana, IL | Posted on January 8th, 2013

"Controlling and manipulating heat for applications such as waste heat energy harvesting, integrated cooling technologies, electron emission, and related functions is an exciting field of study today," explained Lane Martin, an assistant professor of materials science and engineering at Illinois. "Traditionally, these systems have relied on bulk materials, but future nanoscale devices will increasingly require ferroelectric thin films.

"Measuring the pyroelectric response of thin films is difficult and has restricted the understanding of the physics of pyroelectricity, prompting some to label it as 'one of the least-known properties of solid materials'," Martin added. "This work provides the most complete and detailed modeling and experimental study of this widely unknown region of materials and has direct implications for next generation devices."

Researchers found that reducing the dimensions of ferroelectrics increases their susceptibility to size- and strain-induced effects. The group's paper, "Effect of 90-degree domain walls and thermal expansion mismatch on the pyroelectric properties of epitaxial PbZr0.2Ti0.8O3 thin films," appears in the journal Physical Review Letters.

"What we did in this work was to develop a new approach to utilize and understand a class of materials important for all of these applications," Martin said. "By moving to a 'bottom-up' approach that produces nanoscale versions of these materials as thin films, we have observed, for the first time, that certain features, namely domain walls, can be incredibly important and even dominate the temperature-dependent response and performance of these materials."

According to J. Karthik, the first author on the group's paper, thin-film epitaxy has been developed to provide a set of parameters (e.g., film composition, epitaxial strain, electrical boundary conditions, and thickness) that allow for precise control of ferroelectrics and has been instrumental in understanding the physics of dielectric and piezoelectric effects.

"We investigated the contribution of 90º domain walls and thermal expansion mismatch to pyroelectricity in ferroelectric PbZr0.2Ti0.8O3 thin films, a widely used material whose bulk ferroelectric and piezoelectric properties are well understood," Karthik explained. As part of this work, Martin's Prometheus research group developed and applied the first phenomenological models to include extrinsic and secondary contributions to pyroelectricity in polydomain films and predict significant extrinsic contributions (arising from the temperature-dependent motion of domain walls) and large secondary contributions (arising from thermal expansion mismatch between the film and the substrate).

"We have also developed and applied a new phase-sensitive pyroelectric current measurement process to measure thin films for the first time and reveal a dramatic increase in the pyroelectric coefficient with increasing fraction of in-plane oriented domains and thermal expansion mismatch consistent with these models," Karthik said.

"By establishing an understanding of the science of these effects, with models to predict their performance, and demonstrated techniques to fabricate and utilize these properties in nanoscale versions of these materials, their properties can be effectively integrated into existing electronics," Martin said.

This research was supported by the Office of Naval Research, the Army Research Office, and the Air Force Office of Scientific Research.

####

For more information, please click here

Contacts:
Lane Martin, Ph.D.

217-244-9162

Copyright © University of Illinois College of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UC research partnership explores how to best harness solar power March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

New Hopes for Treatment of Intestine Cancer by Edible Nanodrug March 2nd, 2015

Thin films

Researchers enable solar cells to use more sunlight February 25th, 2015

Detecting defects at the nanoscale will profit solar panel production: Researcher Mohamed Elrawemi develops new technologies for defects in thin films, vital in products as printed electronics and solar panels February 24th, 2015

Extreme-temperature electronics: Futuristic material molybdenum disulfide may find new application for thin-film transistors in extremely high-temperature electronics and sensors February 11th, 2015

Dance of the nanovortices February 2nd, 2015

Govt.-Legislation/Regulation/Funding/Policy

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

Sensors

Penn researchers develop new technique for making molybdenum disulfide: Extra control over monolayer material with advantages over graphene February 19th, 2015

Researchers build atomically thin gas and chemical sensors: Sensors made of molybdenum disulfide are small, thin and have a high level of selectivity when detecting gases and chemicals February 19th, 2015

Production of Biosensor in Iran to Detect Oxalic Acid February 18th, 2015

Improved fire detection with new ultra-sensitive, ultraviolet light sensor February 17th, 2015

Discoveries

UC research partnership explores how to best harness solar power March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

New Hopes for Treatment of Intestine Cancer by Edible Nanodrug March 2nd, 2015

Announcements

UC research partnership explores how to best harness solar power March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

New Hopes for Treatment of Intestine Cancer by Edible Nanodrug March 2nd, 2015

Military

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Simulating superconducting materials with ultracold atoms: Rice physicists build superconductor analog, observe antiferromagnetic order February 23rd, 2015

Penn researchers develop new technique for making molybdenum disulfide: Extra control over monolayer material with advantages over graphene February 19th, 2015

New nanogel for drug delivery: Self-healing gel can be injected into the body and act as a long-term drug depot February 19th, 2015

Energy

UC research partnership explores how to best harness solar power March 2nd, 2015

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE