Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > The guide to biomolecular movie-making

Scanning electron microscope images show two different designs of cantilever tip used by Ando and co-workers for high-speed atomic force microscopy.
Scanning electron microscope images show two different designs of cantilever tip used by Ando and co-workers for high-speed atomic force microscopy.

Abstract:
High-speed atomic force microscopy (HS-AFM) is providing the means to produce dramatic footage of moving biomolecules, and scientists at Kanazawa University leading the field. This research is also described in the inaugural December issue of the Kanazawa University Research Bulletin: www.kanazawa-u.ac.jp/research_bulletin/index

Toshio Ando and co-workers at Kanazawa University have developed and used HS-AFM to increase our understanding of several protein systems through microscopic movies of unprecedented spatial and temporal resolution. The team have now published a guide to video recording these important cell components, so that other researchers can benefit from this unique technology.

The guide to biomolecular movie-making

Kanazawa, Japan | Posted on January 4th, 2013

To produce an image, HS-AFM acquires information on sample height at many points by tapping the sample with the sharp tip of a tiny cantilever. Depending on the application, this might involve recording the amplitude and phase of oscillations, or the resonant frequency of the cantilever.

Ando and co-workers use very small cantilevers that afford 10 to 20 times the sensitivity of larger, conventional cantilevers. Copies of their home-made apparatus are now commercially available through the manufacturer Research Institute of Biomolecule Metrology Co., Ltd. (RIBM) in Tsukuba, and record images at least ten times more quickly than their competitors.

In their paper, published in Nature Protocols, the researchers describe how to prepare substrates to hold samples during HS-AFM, and provide advice on the best ways to take advantage of the equipment. These methods have so far enabled the team to record cargo-carrying proteins ‘walking' on cell filaments, the rotational motion of motor proteins that provide energy in cells, and the hydrolysis of cellulose. By sharing their experiences of pioneering work in this field, the entire research community will benefit, and learn ever more about the dynamics and structure of vital biological components.

Publication and Affiliation

Takayuki Uchihashi1,2, Noriyuki Kodera2 & Toshio Ando1,2,* Guide to video recording of structure dynamics and dynamic processes of proteins by high-speed atomic force microscopy. Nature Protocols, 7(6), 1193-1206, (2012).

Department of Physics, Kanazawa University, Kanazawa, Japan
Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa, Japan

*corresponding author, e-mail address:

####

About Kanagawa University
As the leading comprehensive university on the Sea of Japan coast, Kanazawa University has contributed greatly to higher education and academic research in Japan since it was founded in 1949. The University has three colleges and 16 schools offering courses in subjects that include medicine, computer engineering, and humanities.

The University is located on the coast of the Sea of Japan in Kanazawa—a city rich in history and culture. The city of Kanazawa has cultivated a highly respected intellectual profile since the time of the Kaga fiefdom (1598–1867). Kanazawa University is divided into two main campuses: Kakuma and Takaramachi for its approximately 12,200 students including 500 from overseas.

Kanazawa University website: www.kanazawa-u.ac.jp/e/index.html

For more information, please click here

Contacts:
Organization of Frontier Science and Innovation
Kanazawa University
Kakuma, Kanazawa, Ishikawa 920-1192, Japan

Copyright © Kanazawa University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Imaging

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

Making sense of metallic glass February 9th, 2016

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

Videos/Movies

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Novel nanoparticle made of common mineral may help keep tumor growth at bay February 4th, 2016

New invention revolutionizes heat transport February 1st, 2016

Nano-coating makes coaxial cables lighter: Rice University scientists replace metal with carbon nanotubes for aerospace use January 28th, 2016

Discoveries

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Tools

Scientists take nanoparticle snapshots February 10th, 2016

Making sense of metallic glass February 9th, 2016

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic