Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > 'Molecular levers' may make materials better

Abstract:
In a forced game of molecular tug-of war, some strings of atoms can act like a lever, accelerating reactions 1000 times faster than other molecules. The discovery suggests that scientists could use these molecular levers to drive chemical and mechanical reactivity among atoms and ultimately engineer more efficient materials.

'Molecular levers' may make materials better

Durham, NC | Posted on December 23rd, 2012

"We are interested in designing new, stress-responsive materials, so we are trying to develop reactions that are very slow normally but that can be accelerated efficiently by force," said Duke chemist Steve Craig, who headed the research.

In recent experiments, Craig and his team found that a molecule made with a polynorbornene backbone can act as a lever to open a ring embedded within the molecule 1000 times faster than a similar ring being tugged at on a polybutadiene scaffold. The results, which appear Dec. 23 in Nature Chemistry, suggest that a simple change in the backbone may affect the how fast mechanically assisted reactions occur.

Scientists are interested in this type of molecular tug-of-war because many materials break down after repeated cycles of tugging, stress and other forces. "If we can channel usually destructive forces into constructive pathways, we could trigger reactions that make the material stronger when and where it is most useful," Craig said. Researchers might then be able to extend the material's lifetime, which might in the long term have applications ranging from composites for airplane frames to biomedical implants.

In the experiment, Craig, who is a professor and chair of the chemistry department, and his team used the equivalent of microscopic tweezers to grab onto two parts of atomic chains and pulled them so that they would break open, or react, in certain spots. The team predicted that one molecule would react more efficiently than the other but was surprised to find that the force-induced rates differed by three orders of magnitude, an amount that suggests that the polynorbornene backbone can actually accelerate forced reactions the way a crowbar quickens pulling a nail from a wall.

Craig said changes to the molecular group undergoing the reaction may have a much smaller effect than changes to nearby, unreactive molecules like those on the backbone. It is also a good starting point to identify other molecular backbones that are easy to make and have the largest response to changes in nearby reactions, features Craig said might help in developing even better, more responsive materials.

The research was supported by the U.S. Army Research Laboratory, the Army Research Office and National Science Foundation.

Citation: "A Backbone Lever Arm Effect Enhances Polymer Mechanochemistry." (2012) Klukovich, H. et al. Nature Chemistry. AOP. DOI: 10.1038/NCHEM.1540

####

For more information, please click here

Contacts:
Ashley Yeager

919-681-8057

Copyright © Duke University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Chemistry

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

Nano-level lubricant tuning improves material for electronic devices and surface coatings February 11th, 2017

Scientists determine precise 3-D location, identity of all 23,000 atoms in a nanoparticle: Berkeley Lab researchers help to map iron-platinum particle in unprecedented detail February 6th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Discoveries

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Materials/Metamaterials

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Announcements

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Military

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

Meta-lenses bring benchtop performance to small, hand-held spectrometer: Game-changing nanostructure-based lenses allow smaller devices, increased functionality February 9th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project