Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Measuring flow using a tiny wobbling tube

The Coriolis mass flow sensor. The tube is the U-shaped tiny line. In the left lower corner, the electric fingers are visible for measuring the displacement of the tube and activating movement
The Coriolis mass flow sensor. The tube is the U-shaped tiny line. In the left lower corner, the electric fingers are visible for measuring the displacement of the tube and activating movement

Abstract:
One milligram per hour: fluid flow can be measured with great precision using a tiny ‘wobbling' tube with a diameter of only 40 micrometres. Thanks to a new technique, the sensor, which makes use of the ‘Coriolis effect', can be made even more compact, e.g. for medical applications. Scientists at the University of Twente's MESA+ Institute for Nanotechnology have published an article on the subject in Applied Physics Letters.

Measuring flow using a tiny wobbling tube

Enschede, Netherlands | Posted on December 18th, 2012

Coriolis meters are often enormous instruments mounted in a pipeline to measure liquid flow accurately. Reduced to micrometre dimensions the result is a sensor that can measure extremely slow-moving small quantities of fluids. The fluid is passed through a tiny rectangular tube that is made to wobble. The Coriolis effect then causes the tube to move upwards as well, and this upward displacement is a measure of the amount of fluid flowing through it.

No magnets

Until now magnets have been used to bring about the wobbling motion. One of the problems was that the magnets are far bigger than the actual sensor. In the Applied Physics Letters article researcher Harmen Droogendijk introduces a new method, known as ‘parametric excitation'. Dozens of ‘electric fingers' attached to the tube fit between identical opposing fingers mounted on supports running
parallel to the tube. The extent to which these opposing sets of fingers slide between one another can be used to measure the tube's lateral displacement. But we could also use them to set the tube in
motion, thought Droogendijk. He found that there is a limited area of electrical tension where the tube moves up and down much more than at a lower or higher tension, though this has to be tuned very precisely. Droogendijk carried out mathematical modelling, resulting in a new design that no longer needs magnets. More research is needed to find out whether the current lower limit of approximately 1 milligram per hour can be lowered even further.

The research was carried out in the Transducers Science and Technology group led by Prof. Gijs Krijnen, which is part of the University of Twente's MESA+ Institute for Nanotechnology. It received financial support from the Dutch national nanotechnology program NanoNed. More research is needed to find
out whether the current lower limit of approximately 1 milligram per hour can be lowered even further.

Industrial applications

The Coriolis mass flow sensor is being further developed by Bronkhorst High-Tech in Ruurlo to produce a precision instrument for such things as monitoring medical IV pumps, analysing medicines using liquid
chromatography, and use in microreactors and the manufacture of solar cells.

Full bibliographic information

The article, ´Parametric excitation of a micro Coriolis mass flow sensor´, by Harmen Droogendijk, Jarno Groenesteijn, Jeroen Haneveld (Micronit Microfluidics), Remco Sanders, Remco Wiegerink, Theo Lammerink, Joost Lötters (Bronkhorst High-Tech) and Gijs Krijnen, has been published in Applied Physics Letters. It is available on request.

####

For more information, please click here

Contacts:
Wiebe van der Veen
+31612185692


P.O. Box 217
7500 AE Enschede, Netherlands
053-489 9111
053-489 2000

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Leti Presents Advances in Propagation Modeling and Antenna Design for mmWave Spectrum: Paper Is One of 15 that Leti Presented at European Conference on Antennas and Propagation March 19-24 March 23rd, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Nanomedicine

Nanobiotix: The Independent Data Monitoring Committee Recommends the Continuation of the Ongoing Phase II/III Trial of NBTXR3 in Soft Tissue Sarcoma March 23rd, 2017

Nanoparticle paves the way for new triple negative breast cancer drug March 20th, 2017

Block copolymer micellization as a protection strategy for DNA origami March 17th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Announcements

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Tools

Caught on camera -- chemical reactions 'filmed' at the single-molecule level March 22nd, 2017

CRMGroup in Belgium uses a Deben three point bending stage in the development of new steel & coated steel products for automotive and other industrial applications March 21st, 2017

Next-gen steel under the microscope March 18th, 2017

Novel nozzle saves crystals: Double flow concept widens spectrum for protein crystallography March 17th, 2017

Energy

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Researchers develop groundbreaking process for creating ultra-selective separation membranes: Discovery could greatly improve energy-efficiency of separation and purification processes in the chemical and petrochemical industries March 15th, 2017

Solar/Photovoltaic

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

New nanofiber marks important step in next generation battery development March 14th, 2017

Perovskite edges can be tuned for optoelectronic performance: Layered 2D material improves efficiency for solar cells and LEDs March 10th, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project