Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Measuring flow using a tiny wobbling tube

The Coriolis mass flow sensor. The tube is the U-shaped tiny line. In the left lower corner, the electric fingers are visible for measuring the displacement of the tube and activating movement
The Coriolis mass flow sensor. The tube is the U-shaped tiny line. In the left lower corner, the electric fingers are visible for measuring the displacement of the tube and activating movement

Abstract:
One milligram per hour: fluid flow can be measured with great precision using a tiny ‘wobbling' tube with a diameter of only 40 micrometres. Thanks to a new technique, the sensor, which makes use of the ‘Coriolis effect', can be made even more compact, e.g. for medical applications. Scientists at the University of Twente's MESA+ Institute for Nanotechnology have published an article on the subject in Applied Physics Letters.

Measuring flow using a tiny wobbling tube

Enschede, Netherlands | Posted on December 18th, 2012

Coriolis meters are often enormous instruments mounted in a pipeline to measure liquid flow accurately. Reduced to micrometre dimensions the result is a sensor that can measure extremely slow-moving small quantities of fluids. The fluid is passed through a tiny rectangular tube that is made to wobble. The Coriolis effect then causes the tube to move upwards as well, and this upward displacement is a measure of the amount of fluid flowing through it.

No magnets

Until now magnets have been used to bring about the wobbling motion. One of the problems was that the magnets are far bigger than the actual sensor. In the Applied Physics Letters article researcher Harmen Droogendijk introduces a new method, known as ‘parametric excitation'. Dozens of ‘electric fingers' attached to the tube fit between identical opposing fingers mounted on supports running
parallel to the tube. The extent to which these opposing sets of fingers slide between one another can be used to measure the tube's lateral displacement. But we could also use them to set the tube in
motion, thought Droogendijk. He found that there is a limited area of electrical tension where the tube moves up and down much more than at a lower or higher tension, though this has to be tuned very precisely. Droogendijk carried out mathematical modelling, resulting in a new design that no longer needs magnets. More research is needed to find out whether the current lower limit of approximately 1 milligram per hour can be lowered even further.

The research was carried out in the Transducers Science and Technology group led by Prof. Gijs Krijnen, which is part of the University of Twente's MESA+ Institute for Nanotechnology. It received financial support from the Dutch national nanotechnology program NanoNed. More research is needed to find
out whether the current lower limit of approximately 1 milligram per hour can be lowered even further.

Industrial applications

The Coriolis mass flow sensor is being further developed by Bronkhorst High-Tech in Ruurlo to produce a precision instrument for such things as monitoring medical IV pumps, analysing medicines using liquid
chromatography, and use in microreactors and the manufacture of solar cells.

Full bibliographic information

The article, ´Parametric excitation of a micro Coriolis mass flow sensor´, by Harmen Droogendijk, Jarno Groenesteijn, Jeroen Haneveld (Micronit Microfluidics), Remco Sanders, Remco Wiegerink, Theo Lammerink, Joost Lötters (Bronkhorst High-Tech) and Gijs Krijnen, has been published in Applied Physics Letters. It is available on request.

####

For more information, please click here

Contacts:
Wiebe van der Veen
+31612185692


P.O. Box 217
7500 AE Enschede, Netherlands
053-489 9111
053-489 2000

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Elliot Scientific now representing Raman Imaging specialists WITec in the UK and Eire - Unique correlative analysis in one instrument: Raman/AFM, Raman/SNOM December 10th, 2018

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

Nanomedicine

A*STAR, One BioMed launch S$9m joint lab to make diagnostic kit for infectious diseases December 3rd, 2018

New research could fine-tune the gene scissors CRISPR December 1st, 2018

It's not a shock: Better bandage promotes powerful healing November 29th, 2018

Arrowhead Pharmaceuticals to Webcast 2018 Fiscal Year End Results November 27th, 2018

Announcements

Elliot Scientific now representing Raman Imaging specialists WITec in the UK and Eire - Unique correlative analysis in one instrument: Raman/AFM, Raman/SNOM December 10th, 2018

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

Tools

Elliot Scientific now representing Raman Imaging specialists WITec in the UK and Eire - Unique correlative analysis in one instrument: Raman/AFM, Raman/SNOM December 10th, 2018

Milestone for bERLinPro: Photocathodes with high quantum efficiency December 8th, 2018

Spectradyne Partners with Particle Technology Labs for Measurement Services December 6th, 2018

Nanoscribe Presents Successor Model Photonic Professional GT2 for High-Resolution 3D Microfabrication: The first ever production of structures in millimeter size with micrometer precision December 4th, 2018

Energy

New catalyst produces cheap hydrogen November 30th, 2018

New insight into molecular processes November 23rd, 2018

Rice U. scientists form flat tellurium: Two-dimensional element shows promise for solar cells and other optoelectronics October 26th, 2018

How to mass produce cell-sized robots: Technique from MIT could lead to tiny, self-powered devices for environmental, industrial, or medical monitoring October 24th, 2018

Solar/Photovoltaic

Study unlocks full potential of 'supermaterial' graphene: Researchers remove silicon contamination from graphene to double its performance November 30th, 2018

Perovskite solar cells leap toward commercialization September 28th, 2018

September 5th, 2018

NUST MISIS scientists present metamaterial for solar cells and nanooptics July 23rd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project