Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanoifibers clean sulfur from fuel

Photo by Prashant Jain

Nanofibers of metal oxide provide lots of highly reactive surface area for scrubbing sulfur compounds from fuel. Sulfur has to be removed because it emits toxic gasses and corrodes catalysts.
Photo by Prashant Jain

Nanofibers of metal oxide provide lots of highly reactive surface area for scrubbing sulfur compounds from fuel. Sulfur has to be removed because it emits toxic gasses and corrodes catalysts.

Abstract:
Sulfur compounds in petroleum fuels have met their nano-structured match.

University of Illinois researchers developed mats of metal oxide nanofibers that scrub sulfur from petroleum-based fuels much more effectively than traditional materials. Such efficiency could lower costs and improve performance for fuel-based catalysis, advanced energy applications and toxic gas removal.

Nanoifibers clean sulfur from fuel

Champaign, IL | Posted on December 17th, 2012

Co-led by Mark Shannon, a professor of mechanical science and engineering at the U. of I. until his death this fall, and chemistry professor Prashant Jain, the researchers demonstrated their material in the journal Nature Nanotechnology.

Sulfur compounds in fuels cause problems on two fronts: They release toxic gases during combustion, and they damage metals and catalysts in engines and fuel cells. They usually are removed using a liquid treatment that adsorbs the sulfur from the fuel, but the process is cumbersome and requires that the fuel be cooled and reheated, making the fuel less energy efficient.

To solve these problems, researchers have turned to solid metal oxide adsorbents, but those have their own sets of challenges. While they work at high temperatures, eliminating the need to cool and re-heat the fuel, their performance is limited by stability issues. They lose their activity after only a few cycles of use.

Previous studies found that sulfur adsorption works best at the surface of solid metal oxides, so graduate student Mayank Behl, from Jain's group, and Junghoon Yeom, then a postdoctoral researcher in Shannon's group, set out to create a material with maximum surface area. The solution: tiny grains of zinc titanate spun into nanofibers, uniting high surface area, high reactivity and structural integrity in a high-performance sulfur adsorbent.

The nanofiber material is more reactive than the same material in bulk form, enabling complete sulfur removal with less material, allowing for a smaller reactor. The material stays stable and active after several cycles. Furthermore, the fibrous structure grants the material immunity from the problem of sintering, or clumping, that plagues other nano-structured catalysts.

"Our nanostructured fibers do not sinter," Jain said. "The fibrous structure accommodates any thermophysical changes without resulting in any degradation of the material. In fact, under operating conditions, nanobranches grow from the parent fibers, enhancing the surface area during operation."

Jain's group will continue to investigate the enhanced properties of nanofiber structures, hoping to gain an atomic-level understanding of what makes the material so effective.

"We are interested in finding out the atomic sites on the surface of the material where the hydrogen sulfide adsorbs," said Jain, who is also affiliated with the Beckman Institute for Advanced Science and Technology at the U. of I. "If we can know the identity of these sites, we could engineer an even more efficient adsorbent material. The atomic or nanoscale insight we gain from this material system could be useful to design other catalysts in renewable energy and toxic gas removal applications."

This work was supported by the National Science Foundation, the department of chemistry and the Frederick Seitz Materials Research Laboratory at the U. of I.

####

For more information, please click here

Contacts:
Liz Ahlberg
Physical Sciences Editor
217-244-1073


Prashant Jain
217-333-3417

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper, “A regenerable oxide-based H2S adsorbent with nanofibrous morphology,” is available online:

Related News Press

News and information

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

Nanospiked bacteria are the brightest hard X-ray emitters July 2nd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

Chemistry

Carnegie Mellon chemists characterize 3-D macroporous hydrogels: Methods will allow researchers to develop new 'smart' materials June 30th, 2015

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

The Hydrogen-Fuel cell will revolutionize the economy of the world: New non-platinum and nanosized catalyst for polymer electrolyte fuel cell June 29th, 2015

X-rays and electrons join forces to map catalytic reactions in real-time: New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions June 29th, 2015

Govt.-Legislation/Regulation/Funding/Policy

New technology using silver may hold key to electronics advances July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

NIST ‘How-To’ Website Documents Procedures for Nano-EHS Research and Testing July 1st, 2015

Ultra-stable JILA microscopy technique tracks tiny objects for hours July 1st, 2015

Discoveries

Freezing single atoms to absolute zero with microwaves brings quantum technology closer: Atoms frozen to absolute zero using microwaves July 2nd, 2015

New technology using silver may hold key to electronics advances July 2nd, 2015

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

Nanospiked bacteria are the brightest hard X-ray emitters July 2nd, 2015

Materials/Metamaterials

New technology using silver may hold key to electronics advances July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Proposed TSCA Nanomaterial Rule ‘Premature’, Says Former EPA Toxicologist July 1st, 2015

NEI Announces the Issuance of Multiple Patents on Self-Healing & Superhydrophobic Coatings June 30th, 2015

Announcements

Nanospiked bacteria are the brightest hard X-ray emitters July 2nd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

NIST Group Maps Distribution of Carbon Nanotubes in Composite Materials July 2nd, 2015

Energy

New technology using silver may hold key to electronics advances July 2nd, 2015

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project