Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UCSB physicists make strides in understanding quantum entanglement

This is a kagome lattice.

Credit: N. Mori
This is a kagome lattice.

Credit: N. Mori

Abstract:
While some theoretical physicists make predictions about astrophysics and the behavior of stars and galaxies, others work in the realm of the very small, which includes quantum physics. Such is the case at UC Santa Barbara, where theoretical physicists at the Kavli Institute for Theoretical Physics (KITP) cover the range of questions in physics.

UCSB physicists make strides in understanding quantum entanglement

Santa Barbara, CA | Posted on December 15th, 2012

Recently, theoretical physicists at KITP have made important strides in studying a concept in quantum physics called quantum entanglement, in which electron spins are entangled with each other. Using computers to calculate the extreme version of quantum entanglement -- how the spin of every electron in certain electronic materials could be entangled with another electron's spin -- the research team found a way to predict this characteristic. Future applications of the research are expected to benefit fields such as information technology.

"Quantum entanglement is a strange and non-intuitive aspect of the quantum theory of matter, which has puzzled and intrigued physicists since the earliest days of the quantum theory," said Leon Balents, senior author of a recent paper on this topic published in the journal Nature Physics. Balents is a professor of physics and a permanent member of KITP.

Quantum entanglement represents the extent to which measurement of one part of a system affects the state of another; for example, measurement of one electron influences the state of another that may be far away, explained Balents. In recent years, scientists have realized that entanglement of electrons is present in varying degrees in solid materials. Taking this notion to the extreme is the "quantum spin liquid," a state of matter in which every electron spin is entangled with another.

Balents said that quantum spin liquids are being sought in experiments on natural and artificial minerals. A key question posed by physicists is how to calculate theoretically which materials are quantum spin liquids. "In our paper, we provide an answer to this question, showing that a precise quantitative measure of 'long-range' entanglement can be calculated for realistic models of electronic materials," said Balents.

"Our results provide a smoking gun signature of this special type of entanglement that determines whether or not a given material is a quantum spin liquid," explained Balents. The results prove that an emblematic example of this type of problem -- material with electron spins residing on the "kagome lattice" -- is indeed a quantum spin liquid, according to Balents. The kagome lattice is a pattern of electron spins named after a type of Japanese fishing basket that this arrangement of spins resembles.

"We expect the technique we developed to have broad applications in the search for these unique quantum states, which in the future may have remarkable applications in information technologies," said Balents.

Hong-Chen Jiang, postdoctoral fellow with KITP, and Zhenghan Wang, a researcher with Microsoft Station Q at UCSB, are co-authors of the paper.

####

For more information, please click here

Contacts:
Gail Gallessich

805-893-7220

Copyright © University of California - Santa Barbara

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

Breakthrough in OLED technology March 2nd, 2015

Forbidden quantum leaps possible with high-res spectroscopy March 2nd, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Quantum Computing

Forbidden quantum leaps possible with high-res spectroscopy March 2nd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

Waterloo invention advances quantum computing research: New device, which will be used in labs around the world to develop quantum technologies, produces fragile entangled photons in a more efficient way February 16th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

Discoveries

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Announcements

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Pens filled with high-tech inks for do-it-yourself sensors March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Quantum nanoscience

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

Quantum many-body systems on the way back to equilibrium: Advances in experimental and theoretical physics enable a deeper understanding of the dynamics and properties of quantum many-body systems February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

Exotic states materialize with supercomputers February 12th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE