Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Oral delivery of colon cancer drug

Abstract:
Oral administration of anti-cancer agents is both more convenient and less painful than doing so intravenously. It can also afford controlled and sustained release, and reduce side-effects caused by the drug (or drugs). However, the environment which they have to pass through sets strict requirements for the materials used to transport them. Lingxue Kong and colleagues at Deakin University, Australia have now created a delivery vehicle for the cancer drug 5-fluorouracil (5-FU) that survives the harsh pH conditions en-route to the colorectal area.

Oral delivery of colon cancer drug

Germany | Posted on December 13th, 2012

Dispensing drugs orally to this area of the body is particularly difficult because the delivery system has to survive the three different acidity levels of the stomach, duodenum and small intestine (pH 1.2, 4.5 and 6.8, respectively) before releasing at pH 7.4 in the colon and rectum. Reporting in the Journal of Applied Polymer Science, the authors describe a water-in-oil-in-water multiple emulsion and solvent evaporation technique to first load 5-FU into poly(lactic-co-glycolic acid) nanoparticles. The drug loading, encapsulation efficiency and particle size were optimised by varying the fabrication parameters, including adjusting the pH value of the outer water phase to the isoelectric point of 5-FU. The loaded nanoparticles are subsequently coated with the anionic polymer Eudragit S100 based on methacrylic acid and methyl methacrylate. Importantly this is insoluble in aqueous solutions of pH 7 or less.

In vitro drug dissolution tests mimicking both the time spent passing through and acidity of each part of the human gastrointestinal tract show no 5-FU release at pH 1.2 and 4.5, with very limited release at pH 6.8. At pH 7.4 there is an initial burst release followed by an extended slow release of up to 120 hours. The system clearly shows promise for treatment of colorectal cancer because it overcomes the often seen problems of both early drug release from nanoparticles and poor functionality of microspheres.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library:

Related News Press

News and information

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Nanomedicine

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

Discoveries

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Announcements

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE