Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Oral delivery of colon cancer drug

Abstract:
Oral administration of anti-cancer agents is both more convenient and less painful than doing so intravenously. It can also afford controlled and sustained release, and reduce side-effects caused by the drug (or drugs). However, the environment which they have to pass through sets strict requirements for the materials used to transport them. Lingxue Kong and colleagues at Deakin University, Australia have now created a delivery vehicle for the cancer drug 5-fluorouracil (5-FU) that survives the harsh pH conditions en-route to the colorectal area.

Oral delivery of colon cancer drug

Germany | Posted on December 13th, 2012

Dispensing drugs orally to this area of the body is particularly difficult because the delivery system has to survive the three different acidity levels of the stomach, duodenum and small intestine (pH 1.2, 4.5 and 6.8, respectively) before releasing at pH 7.4 in the colon and rectum. Reporting in the Journal of Applied Polymer Science, the authors describe a water-in-oil-in-water multiple emulsion and solvent evaporation technique to first load 5-FU into poly(lactic-co-glycolic acid) nanoparticles. The drug loading, encapsulation efficiency and particle size were optimised by varying the fabrication parameters, including adjusting the pH value of the outer water phase to the isoelectric point of 5-FU. The loaded nanoparticles are subsequently coated with the anionic polymer Eudragit S100 based on methacrylic acid and methyl methacrylate. Importantly this is insoluble in aqueous solutions of pH 7 or less.

In vitro drug dissolution tests mimicking both the time spent passing through and acidity of each part of the human gastrointestinal tract show no 5-FU release at pH 1.2 and 4.5, with very limited release at pH 6.8. At pH 7.4 there is an initial burst release followed by an extended slow release of up to 120 hours. The system clearly shows promise for treatment of colorectal cancer because it overcomes the often seen problems of both early drug release from nanoparticles and poor functionality of microspheres.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Link to the original paper on Wiley Online Library:

Related News Press

News and information

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Nanomedicine

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Nanobiotix Provides Update on Global Development of Lead Product NBTXR3: Seven clinical trials across the world: More than 2/3 of STS patients recruited in the “act.in.sarc” Phase II/III trial: Phase I/II prostate cancer trial now recruiting in the U.S. November 28th, 2016

From champagne bubbles, dance parties and disease to new nanomaterials: Understanding nucleation of protein filaments might help with Alzheimer's Disease and type 2 Diabetes November 24th, 2016

Nanopolymer-modified protein array can pinpoint hard-to-find cancer biomarker November 17th, 2016

Discoveries

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Announcements

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project