Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Seeing in color at the nanoscale: Berkeley Lab scientists develop a new nanotech tool to probe solar-energy conversion

A new microscopy tool promises to revolutionize nanoscale imaging. Left, a design schematic of the so-called “campanile” microscopy tip. Right, an electron micrograph of the tip and, inset, the UC Berkeley campanile bell-tower for which it is named.
A new microscopy tool promises to revolutionize nanoscale imaging. Left, a design schematic of the so-called “campanile” microscopy tip. Right, an electron micrograph of the tip and, inset, the UC Berkeley campanile bell-tower for which it is named.

Abstract:
If nanoscience were television, we'd be in the 1950s. Although scientists can make and manipulate nanoscale objects with increasingly awesome control, they are limited to black-and-white imagery for examining those objects. Information about nanoscale chemistry and interactions with light—the atomic-microscopy equivalent to color—is tantalizingly out of reach to all but the most persistent researchers.

Seeing in color at the nanoscale: Berkeley Lab scientists develop a new nanotech tool to probe solar-energy conversion

Berkeley, CA | Posted on December 13th, 2012

But that may all change with the introduction of a new microscopy tool from researchers at the Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) that delivers exquisite chemical details with a resolution once thought impossible. The team developed their tool to investigate solar-to-electric energy conversion at its most fundamental level, but their invention promises to reveal new worlds of data to researchers in all walks of nanoscience.

"We've found a way to combine the advantages of scan/probe microscopy with the advantages of optical spectroscopy," says Alex Weber-Bargioni, a scientist at the Molecular Foundry, a DOE nanoscience center at Berkeley Lab. "Now we have a means to actually look at chemical and optical processes on the nanoscale where they are happening."

Weber-Bargioni is one of the corresponding authors of a paper reporting this research, published in Science. The paper is titled, "Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging." Co-authoring the paper are Wei Bao, Mauro Meli, Frank Ogletree, Shaul Aloni, Jeffrey Bokor, Stephano Cabrini, Miquel Salmeron, Eli Yablonovitch, and James Schuck of Berkeley Lab; Marco Staffaroni of the University of California, Berkeley; Hyuck Choo of Caltech; and their colleagues in Italy, Niccolo Caselli, Francesco Riboli, Diederik Wiersma, and Francesca Intoni.

"If you want to characterize materials, particularly nanomaterials, the way it's traditionally been done is with electron microscopies and scan/probe microscopies because those give you really high, sub-atomic spatial resolution," says co-author James Schuck, a nano-optics researcher at the Molecular Foundry. "Unfortunately, what they don't give you is chemical, molecular-level information."

For chemical information, researchers typically turn to optical or vibrational spectroscopy. The way a material interacts with light is dictated to large part by its chemical composition, but for nanoscience the problem with doing optical spectroscopy at relevant scales is the diffraction limit, which says you can't focus light down to a spot smaller than approximately half its wavelength, due to the wave-nature of light.

To get around the diffraction limit, scientists employ "near-field" light. Unlike the light we can see, near-field light decays exponentially away from an object, making it hard to measure, but it contains very high resolution—much higher than normal, far-field light.

Says Schuck, "The real challenge to near-field optics, and one of the big achievements in this paper, is to create a device that acts as a transducer of far-field light to near-field light. We can squeeze it down and get very enhanced local fields that can interact with matter. We can then collect any photons that are scattered or emitted due to this interaction, collect in the near field with all this spatial frequency information and turn it back into propagating, far-field light."

The trick for that conversion is to use surface plasmons: collective oscillations of electrons that can interact with photons. Plasmons on two surfaces separated by a small gap can collect and amplify the optical field in the gap, making a stronger signal for scientists to measure.

Researchers have exploited these effects to make near-field probes with a variety of geometries, but the experiments typically require painstaking optical alignment, suffer from background noise, only work for narrow frequency ranges of light and are limited to very thin samples.

In this latest work, however, the Berkeley Lab researchers transcended these limitations with a cleverly designed near-field probe. Fabricated on the end of an optical fiber, the probe has a tapered, four-sided tip. The researchers named their new tool after the campanile church tower it resembles, inspired by the landmark clock tower on the UC Berkeley campus. Two of the campanile's sides are coated with gold and the two gold layers are separated by just a few nanometers at the tip. The three-dimensional taper enables the device to channel light of all wavelengths down into an enhanced field at the tip. The size of the gap determines the resolution.

In a regular atomic force microscope (AFM), a sharp metal tip is essentially dragged across a sample to generate a topological map with sub-nanoscale resolution. The results can be exquisite but only contain spatial information and nothing about the composition or chemistry of the sample.

Replacing the usual AFM tip with a campanile tip is like going from black-and-white to full color. You can still get the spatial map but now there's a wealth of optical data for every pixel on that map. From optical spectra, scientists can identify atom and molecule species, and extract details about electronic structure.

"That's the beauty of these tips," says Schuck. "You can just put them on the end of an optical fiber and then it's just like using a regular AFM. You don't have to be a super near-field jock anymore to get this type of data."

The team developed their new tool to study indium-phosphide nanowires. These nanowires, with the nearly ideal band gap of 1.4 electron-volts, are well-suited to converting solar energy to electricity. The researchers found that the nanowires were not the homogeneous objects previously thought, but instead had varying optoelectronic properties along their length, which could radically alter how sunlight is converted to electricity. They also found that photoluminescence, an indication of the relationship between light and electricity, was seven-times stronger in some parts of a nanowire than others. This is the first time anyone has measured these events on such a small scale.

Weber-Bargioni says: "Details like this about indium-phosphide nanowires are important because if you want to use these suckers for photocatalysis or a photovoltaic material then the length scale at which we're measuring is where everything happens. This information is really important to understand how, for example, the fabrication and surface treatment of nanowires influences these charge recombination velocities. These determine how efficiently a solar device can convert photons into usable electrons."

Adds Schuck: "We realized that this is really the optimal way to do any kind of optical experiment one might want to do at the nano scale. So we use it for imaging and spectroscopy but we anticipate many other uses also."

Experiments were carried out in collaboration with the groups of Diederik Wiersma and Francesca Intonti from the European Laboratory for Non-linear Spectroscopy, Italy.

This research was supported by the DOE Office of Science.

####

About Berkeley Lab
Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

The Molecular Foundry is one of five DOE Nanoscale Science Research Centers (NSRCs), national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize, and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE’s Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos national laboratories. For more information about the DOE NSRCs, please visit http://science.energy.gov/bes/suf/user-facilities/nanoscale-science-research-centers/.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov/.

For more information, please click here

Contacts:
Alison Hatt
510-495-2391

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

For more information about the Molecular Foundry go here:

For more information about the research of Jim Schuck go here:

Related News Press

Imaging

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

News and information

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

Laboratories

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

X-ray Laser Probes Tiny Quantum Tornadoes in Superfluid Droplets: SLAC Experiment Reveals Mysterious Order in Liquid Helium August 25th, 2014

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Chemistry

Production of Toxic Ion Nanosorbents with High Sorption Capacity in Iran August 17th, 2014

Scientists fold RNA origami from a single strand: RNA origami is a new method for organizing molecules on the nanoscale. Using just a single strand of RNA, this technique can produce many complicated shapes. August 14th, 2014

Could hemp nanosheets topple graphene for making the ideal supercapacitor? August 12th, 2014

Iranians Find Novel Method for Processing Highly Pure Ceramic Nanoparticles August 12th, 2014

Govt.-Legislation/Regulation/Funding/Policy

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Leading European communications companies and research organizations have launched an EU project developing the future 5th Generation cellular mobile networks August 28th, 2014

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

Discoveries

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Announcements

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Tools

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Ultra-Low Frequency Vibration Isolation Stabilizes Scanning Tunneling Microscopy at UCLA’s Nano-Research Group August 28th, 2014

Measure Both Elastic and Viscous Properties with AFM Using Asylum Research’s Exclusive AM-FM Viscoelastic Mapping Mode August 28th, 2014

Energy

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

Aspen Aerogels, Inc. to Present at Barclays CEO Energy-Power Conference August 27th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Chemical reaction yields "tapes" of porphin molecules: Flexible tapes from the nanoworld August 13th, 2014

Solar/Photovoltaic

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Eco-friendly 'pre-fab nanoparticles' could revolutionize nano manufacturing: UMass Amherst team invents a way to create versatile, water-soluble nano-modules August 13th, 2014

An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing August 11th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE