Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanotechnology drug delivery shows promise for treatment of pediatric cancer: Childhood leukemia the focus of research

Abstract:
This month, Molecular Pharmaceutics reported promising findings from the Nemours Center for Childhood Cancer Research and the Materials Science and Engineering Department at the University of Delaware, about the potential for nanotechnology to deliver chemotherapeutic agents in a way that attacks cancer cells without harming healthy cells. To date, nanoparticle-based drug delivery approaches have been poorly developed for the treatment of childhood leukemia, which comprises 30% of childhood cancers. In the Nemours study, encapsulated dexamethasone ("dex") delivered to pre-clinical models with leukemia significantly improved quality of life and survival compared to the control receiving the unencapsulated drug.

Nanotechnology drug delivery shows promise for treatment of pediatric cancer: Childhood leukemia the focus of research

Wilmington, DE | Posted on December 5th, 2012

Acute lymphoblastic leukemia (ALL) is the most common form of pediatric leukemia. Although 5-year survival rates for ALL approach 90% with available chemotherapy treatments, the deleterious side effects of the drugs, including secondary cancers and fertility, cognitive, hearing, and developmental problems, present a significant concern for survivors and their families. Dex is one of the most commonly used drugs to treat childhood leukemia and long-term systemic exposure to dex causes considerable side effects.

Studies conducted by the lead author A. K. Rajasekaran, PhD, and his team at Nemours in collaboration with Xinqiao Jia, PhD, and her team at the University of Delaware, used polymeric nanoparticles containing chemotherapeutic agents to ensure controlled delivery of drugs to cancer cells in preclinical models. "There are currently seven or eight drugs that are used for chemotherapy to treat leukemia in children," said Dr. Rajasekaran. "They are all toxic and do their job by killing rapidly dividing cells." However, he explained, these drugs don't differentiate cancer cells from other, healthy cells. "The good news is that these drugs are 80-90% effective in curing leukemia. The bad news is that many chemotherapeutic treatments cause severe side effects, especially in children." He posits that it will take researchers hundreds of millions of dollars and many years to find better alternative drug treatments. In the interim, scientists like Dr. Rajasekaran and his colleagues are working on novel ways to deliver existing and affordable drugs to children. "Our polymer synthesis and particle engineering are guided by the clinical need for reducing the side effects of cancer drugs," Dr. Jia commented. Vinu Krishnan, the first author of the study and a chemical engineer and graduate student in Materials Science and Engineering, said, "I am very excited about the results and look forward to taking this to the next level and introducing this approach for the clinical treatment of childhood leukemia". Students in Dr. Jia's group contributing to this work also include Xian Xu and Xiaowei Yang.

To date, advances in nanotechnology have been primarily concentrated around adult cancers. Nanotechnology involves the use of encapsulated particles of drugs that go into the core of the cell. The nanoparticles stick only to the cancer cells and destroy them by delivering the drug precisely, without detecting or harming the normal cells. In preclinical models of leukemia, Dr. Rajasekaran and his team were able to improve survival and quality of life via nanotechnology. Encapsulating the drug uses one third of the typical dose, with good treatment results and no discernible side effects. In addition, the mice that received the drugs delivered via nanoparticles survived longer than those that received the drug administered in the traditional way.

This work is supported by National Institutes of Health (RO1 DK56216, P20RR016458, P20 RR017716), Delaware Health Sciences Alliance, Andrew McDonough B + Foundation, Caitlin Robb Foundation, Kids Runway for Research, Sones Brothers, Nemours Foundation and funds from the University of Delaware.

####

About Nemours
The Nemours Center for Childhood Cancer Research (NCCCR) is an entity of Nemours Biomedical Research and Nemours Center for Cancer and Blood Disorders at the Alfred I. duPont Hospital for Children. The goal of the center is to evolve into a leader in research focusing on biomarkers for childhood cancers and cancers that affect families. The NCCCR works with the Christiana Care Helen F. Graham Cancer Center, the Universityof Delaware Center for Translational Research and the Delaware Biotechnology Institute. The Nemours/Alfred I. duPont Hospital for Children is a division of Nemours, which operates one of the nation's largest health systems devoted to pediatric patient care, teaching, and research. Established as The Nemours Foundation through the legacy and philanthropy of Alfred I. duPont, Nemours offers pediatric clinical care, research, education, advocacy, and prevention programs to families in the communities it serves.

For more information, please click here

Contacts:
Karen Bengston

302-298-7319

Copyright © Nemours

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

How photoblueing disturbs microscopy February 26th, 2021

Changing the silkworm's diet to spin stronger silk February 26th, 2021

From microsaws to nanodrills: laser pulses act as subtle machining tools: Industrial-grade materials processing on the sub-micron scale is enabled by spatially structured ultrashort laser pulses February 26th, 2021

Nanoparticles help untangle Alzheimer's disease amyloid beta plaques: New research shows that the protein that causes Alzheimer's disease's hallmark brain plaques clings to certain bowl-shaped nanoparticles, allowing researchers to better understand the disease and potentially pr February 26th, 2021

Govt.-Legislation/Regulation/Funding/Policy

Bioinformatics tool accurately tracks synthetic: DNA Computer scientists show benefits of bioinformatics with PlasmidHawk February 26th, 2021

Researchers improve efficiency of next-generation solar cell material: Reducing internal losses could pave the way to low-cost perovskite-based photovoltaics that match silicon cellsí output February 26th, 2021

Dynamics of nanoparticles using a new isolated lymphatic vessel lumen perfusion system February 19th, 2021

Pore-like proteins designed from scratch: By creating barrel-shaped proteins that embed into lipid membranes, biochemist have expanded the bioengineering toolkit February 19th, 2021

Nanomedicine

How photoblueing disturbs microscopy February 26th, 2021

Changing the silkworm's diet to spin stronger silk February 26th, 2021

Nanoparticles help untangle Alzheimer's disease amyloid beta plaques: New research shows that the protein that causes Alzheimer's disease's hallmark brain plaques clings to certain bowl-shaped nanoparticles, allowing researchers to better understand the disease and potentially pr February 26th, 2021

Fantastic voyage: Nanobodies could help CRISPR turn genes on and off: Stanford researchers attached biological nanobodies to the CRISPR DNA editing tool in an experimental combo designed to extend the usefulness of two promising molecular tools February 25th, 2021

Announcements

Changing the silkworm's diet to spin stronger silk February 26th, 2021

From microsaws to nanodrills: laser pulses act as subtle machining tools: Industrial-grade materials processing on the sub-micron scale is enabled by spatially structured ultrashort laser pulses February 26th, 2021

Nanoparticles help untangle Alzheimer's disease amyloid beta plaques: New research shows that the protein that causes Alzheimer's disease's hallmark brain plaques clings to certain bowl-shaped nanoparticles, allowing researchers to better understand the disease and potentially pr February 26th, 2021

Researchers improve efficiency of next-generation solar cell material: Reducing internal losses could pave the way to low-cost perovskite-based photovoltaics that match silicon cellsí output February 26th, 2021

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Bioinformatics tool accurately tracks synthetic: DNA Computer scientists show benefits of bioinformatics with PlasmidHawk February 26th, 2021

Researchers improve efficiency of next-generation solar cell material: Reducing internal losses could pave the way to low-cost perovskite-based photovoltaics that match silicon cellsí output February 26th, 2021

Pore-like proteins designed from scratch: By creating barrel-shaped proteins that embed into lipid membranes, biochemist have expanded the bioengineering toolkit February 19th, 2021

A little soap simplifies making 2D nanoflakes: Rice labís experiments refine processing of hexagonal boron nitride January 27th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project