Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A*STAR's Institute of Microelectronics and SFC Fluidics collaborate to develop point-of-need traumatic brain injury dIagnostic device

Abstract:
A*STAR's Institute of Microelectronics (IME) and SFC Fluidics®, a USA microfluidics-based biomedical device development company, will be collaborating to develop a portable diagnostic tool for rapid triaging of traumatic brain injury (TBI) victims and to improve the treatment strategies. TBI is one of the most common causes of death and disability in the world, usually resulting from blasts, falls, knocks, traffic accidents, and assaults.

A*STAR's Institute of Microelectronics and SFC Fluidics collaborate to develop point-of-need traumatic brain injury dIagnostic device

Singapore | Posted on November 27th, 2012

2. The proposed diagnostic tool is a fully-integrated, automated biosensor device which requires only a drop of blood to detect up to three biomarkers released by the brain after sustaining injury. The biomarker readings will be displayed on an easy-to-read screen, along with an indicator alerting the care giver to the severity of the injury.

3. Unlike conventional diagnostic tools such as neurological tests and computed tomography (CT) scans, the biosensor device does not require any trained personnel for sample handling. The portable feature of the device facilitates rapid on-site diagnosis of the injury. Caregivers will be able to respond quickly with the proper course of treatment to prevent injury aggravation.

4. The biosensor device leverages and integrates IME's silicon-based microfluidic sensor and biosensor technology and bio-electrochemical assay development capability. IME has built up strong capabilities in biomedical microsystems and has established deep collaborations with the clinical community and key industry partners in Singapore to advance silicon-based Point-Of-Care diagnostics devices.

5. "This collaboration exemplifies the extension of "More-than-Moore" technologies to healthcare. Building on our core capabilities in silicon-based microfluidics and biosensor technology, we can help our partner create innovative diagnostic tools to improve TBI treatment," says Prof. Dim-Lee Kwong, Executive Director of IME. "Working with SFC provides a good opportunity for us to deepen our knowledge in healthcare applications to enable high quality and affordable healthcare solutions."

6. "We are excited to partner with IME, a leading R&D institute with a diverse suite of capabilities, including microfluidics, MEMS, nanoelectronics, integration and packaging. SFC has been expanding fast for the last few years. We have developed quite a few very exciting new technologies in the microfluidics and biomedical sensor areas. Some of these technologies have been commercialized. By leveraging on IME's industry standard mass production facilities, we can cut down the product development cycle time. "The TBI project is the start of a longer term collaboration that SFC will explore together with IME," commented by Dr. Sai Kumar, Vice President of Research and development, SFC Fluidics.

####

About Agency for Science, Technology and Research (A*STAR)
The Agency for Science, Technology and Research (A*STAR) is the lead agency for fostering world-class scientific research and talent for a vibrant knowledge-based and innovation-driven Singapore. A*STAR oversees 14 biomedical sciences, and physical sciences and engineering research institutes, and seven consortia & centre, which are located in Biopolis and Fusionopolis, as well as their immediate vicinity. A*STAR supports Singapore's key economic clusters by providing intellectual, human and industrial capital to its partners in industry. It also supports extramural research in the universities, hospitals, research centres, and with other local and international partners.

About Institute of Microelectronics (IME)

The Institute of Microelectronics (IME) is a research institute of the Science and Engineering Research Council of the Agency for Science, Technology and Research (A*STAR). Positioned to bridge the R&D between academia and industry, IME's mission is to add value to Singapore's semiconductor industry by developing strategic competencies, innovative technologies and intellectual property; enabling enterprises to be technologically competitive; and cultivating a technology talent pool to inject new knowledge to the industry. Its key research areas are in integrated circuits design, advanced packaging, bioelectronics and medical devices, MEMS, nanoelectronics, and photonics. For more information, visit IME on the Internet: www.ime.a-star.edu.sg.

About SFC

Founded in 2003, SFC Fluidics® is a privately held company located in Fayetteville, Arkansas. The company's unique product lines span a diverse range of markets including point-of-care diagnostics, analytical instrumentation and laboratory liquid handling. A driving trend in biomedical and analytical instrumentation is toward higher performance, lower operating cost, and improved portability. The company's products are based on innovative technologies that improve speed, performance and affordability. Its mission is to expand scientific knowledge, advance health care, and improve overall quality of life through enabling microfluidics technologies.

For more information, please click here

Contacts:
For IME

Cindy Chew
Institute of Microelectronics
DID: +65 6770 5375


For SFC Fluidics
Ryan Heiligenthal
SFC Fluidics
DID: +1 479-527-6810


Ms Cindy Chew
Tel +65 6770 5375


Ryan Heiligenthal
Tel +1 479-527-6810

Copyright © Agency for Science, Technology and Research (A*STAR)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Microfluidics/Nanofluidics

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Nano-SPEARs gently measure electrical signals in small animals: Rice University's tiny needles simplify data gathering to probe diseases, test drugs April 17th, 2017

Particle Works creates range of high performance quantum dots February 23rd, 2017

DNA 'barcoding' allows rapid testing of nanoparticles for therapeutic delivery February 7th, 2017

Nanomedicine

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

Nanobiotix presented new clinical and pre-clinical data confirming NBTXR3’s significant potential role in Immuno-Oncology at SITC Annual Meeting November 14th, 2017

Arrowhead to Present at 29th Annual Piper Jaffray Healthcare Conference November 14th, 2017

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Sensors

The stacked color sensor: True colors meet minimization November 16th, 2017

Promising sensors for submarines, mines and spacecraft: MSU scientists are developing nanostructured gas sensors that would work at room temperature November 10th, 2017

Practical superconducting nanowire single photon detector with record detection efficiency over 90 percent November 9th, 2017

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

Announcements

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Alliances/Trade associations/Partnerships/Distributorships

EC Project Aims at Creating and Commercializing Cyber-Physical-System Solutions November 14th, 2017

GLOBALFOUNDRIES, Fudan Team to Deliver Next Generation Dual Interface Smart Card November 14th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

More 22 of 59,885 Print all In new window Leti to Present Update of CoolCube/3DVLSI Technologies Development at 2017 IEEE S3S: Future Developments and Tape-Out Vehicles to Be Presented during Oct. 17 Workshop October 12th, 2017

Research partnerships

EC Project Aims at Creating and Commercializing Cyber-Physical-System Solutions November 14th, 2017

Leti Joins DARPA-Funded Project to Develop Implantable Device for Restoring Vision November 9th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Ames Laboratory, UConn discover superconductor with bounce October 25th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project