Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New energy technologies promise brighter future

Abstract:
In three studies published in the current issue of Technology and Innovation - Proceedings of the National Academy of Inventors® ( https://www.cognizantcommunication.com/component/content/article/563 ), innovators unveil creative technologies that could change our sources of energy, change our use of energy, and change our lives.

New energy technologies promise brighter future

Tampa, FL | Posted on November 22nd, 2012

Untapped energy in the oceans

The kinetic energy in the Florida Current and in Florida's ocean waves can be captured and used, said Howard P. Hanson of the Southeast National Marine Renewable Energy Center at Florida Atlantic University.

"Capturing the kinetic energy of the Florida Current will require both materials advances and new designs for marine current turbines and their efficient deployment," said Hanson. "The hydrokinetic energy of tidal and open-currents, as well as ocean waves, and the thermal potential of the oceanic stratification, can be recovered using ocean thermal conversion technology."

Hanson calls this concept "marine renewable energy," or MRE, and noted in his article that the U.S. Department of Energy has formed three national MRE centers to investigate the resource potential in the oceans and to advance the technology for recovering MRE.

Nanoscale "rectennas" can convert waste thermal energy to electricity

"Converting waste heat to electrical energy can be a reality by using a rectenna, a combination of high frequency antenna and a tunnel diode," wrote three clean energy engineers from the University of South Florida's Clean Energy Resource Center.

According to article co-author Yogi Goswami, thermal radiation, or the infrared (IR) portion of the electromagnetic spectrum, is often an overlooked source of renewable energy and more than half of the power provided by the sun - both directed and re-radiated - lies in the infrared part of the spectrum.

"If the IR radiation potential of the earth could be harvested with 75 percent efficiency, it would generate more energy per unit area than a fixed orientation solar cell located in a prime solar location," said study co-author Subramanian Krishnan.

Rectenna components (antenna and rectifier) used to recapture wasted IR radiation is developed from the decades old concept of using the wave nature of light rather than its thermal effect. Recent advances in nanotechnology have made possible the harvesting of solar energy by rectenna more viable, they said. Recent research has shown that rectenna can be developed at IR frequencies with existing technology and used for IR energy conversion.

For co-author Elias Stefanokos, the approach of using a rectenna in combination with a plasmonic blackbody emitter would improve efficiency of all systems.

"This research will significantly increase the efficiency of photovoltaic cells, at little added cost, by integrating the plasmonic emitter with the cell," said Stefanokos.

Their paper presents the current state-of-the-art in the field of rectenna-based conversion with a focus on its critical components.

Nanotechnology solutions for greenhouse light

"Farmers are at the mercy of weather that can cause damage to their crops," wrote a team of physicists from the University of South Florida. "Consequently, greenhouse farming and urban agriculture are being looked at as a more efficient and cost effective way to grow produce."

Sarath Witanachchi, Marek Merlak and Prasanna Mahawela, of the USF Department of Physics, presented the specifics for a new nanophosphor-based electroluminesence lighting device that caters to the exact wavelengths of light required for photosynthesis in indoor, hydroponic agriculture. The new, nanotechnology-based grow light also has the potential to reduce energy costs significantly."

"Conventional technologies used in today's agriculture are inefficient and lead to natural resource waste and degrade the environment," said Witanachchi. "Urban agriculture will become the choice in the future. Nanophosphors required to fabricate the active layer of the electroluminescence device are grown by a microwave plasma process, which was developed at the University of South Florida. This process enables the growth of crystalline nanophosphors directly on a substrate as a uniform coating without further processing steps."

The National Academy of Inventors® is a 501c3 non-profit organization comprised of U.S. and international universities and non-profit research institutes. It was founded in 2010 to recognize and encourage inventors with a patent issued from the U.S. Patent and Trademark Office, enhance the visibility of academic technology and innovation, encourage the disclosure of intellectual property, educate and mentor innovative students, and translate the inventions of its members to benefit society. Email web www.academyofinventors.org

####

For more information, please click here

Contacts:
Technology and Innovation
University of South Florida
Office of Research & Innovation
3702 Spectrum Blvd., Suite 175
Tampa, Florida, 33612 USA
Tel: +1-813-974-1347

Copyright © University of South Florida

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Quantum teleportation on a chip: A significant step towards ultra-high speed quantum computers April 1st, 2015

So, near and yet so far: Stable HGNs for Raman April 1st, 2015

Two-dimensional dirac materials: Structure, properties, and rarity April 1st, 2015

3-D neural structure guided with biocompatible nanofiber scaffolds and hydrogels April 1st, 2015

Discoveries

A novel way to apply drugs to dental plaque Nanoparticles release drugs to reduce tooth decay April 1st, 2015

Quantum teleportation on a chip: A significant step towards ultra-high speed quantum computers April 1st, 2015

Two-dimensional dirac materials: Structure, properties, and rarity April 1st, 2015

3-D neural structure guided with biocompatible nanofiber scaffolds and hydrogels April 1st, 2015

Announcements

Quantum teleportation on a chip: A significant step towards ultra-high speed quantum computers April 1st, 2015

So, near and yet so far: Stable HGNs for Raman April 1st, 2015

Two-dimensional dirac materials: Structure, properties, and rarity April 1st, 2015

3-D neural structure guided with biocompatible nanofiber scaffolds and hydrogels April 1st, 2015

Environment

Young NTU Singapore spin-off clinches S$4.3 million joint venture with Chinese commercial giant March 23rd, 2015

New processing technology converts packing peanuts to battery components March 22nd, 2015

EU Funded PCATDES Project has completed its half-period with success March 19th, 2015

Are current water treatment methods sufficient to remove harmful engineered nanoparticle? March 10th, 2015

Energy

Wrapping carbon nanotubes in polymers enhances their performance: Scientists at Japan's Kyushu University say polymer-wrapped carbon nanotubes hold much promise in biotechnology and energy applications March 30th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Chemists make new silicon-based nanomaterials March 27th, 2015

New processing technology converts packing peanuts to battery components March 22nd, 2015

NC State researchers create 'nanofiber gusher': Report method of fabricating larger amounts of nanofibers in liquid March 19th, 2015

Drexel Univ. materials research could unlock potential of lithium-sulfur batteries March 17th, 2015

Solar/Photovoltaic

Wrapping carbon nanotubes in polymers enhances their performance: Scientists at Japan's Kyushu University say polymer-wrapped carbon nanotubes hold much promise in biotechnology and energy applications March 30th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE