Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New energy technologies promise brighter future

Abstract:
In three studies published in the current issue of Technology and Innovation - Proceedings of the National Academy of Inventors® ( https://www.cognizantcommunication.com/component/content/article/563 ), innovators unveil creative technologies that could change our sources of energy, change our use of energy, and change our lives.

New energy technologies promise brighter future

Tampa, FL | Posted on November 22nd, 2012

Untapped energy in the oceans

The kinetic energy in the Florida Current and in Florida's ocean waves can be captured and used, said Howard P. Hanson of the Southeast National Marine Renewable Energy Center at Florida Atlantic University.

"Capturing the kinetic energy of the Florida Current will require both materials advances and new designs for marine current turbines and their efficient deployment," said Hanson. "The hydrokinetic energy of tidal and open-currents, as well as ocean waves, and the thermal potential of the oceanic stratification, can be recovered using ocean thermal conversion technology."

Hanson calls this concept "marine renewable energy," or MRE, and noted in his article that the U.S. Department of Energy has formed three national MRE centers to investigate the resource potential in the oceans and to advance the technology for recovering MRE.

Nanoscale "rectennas" can convert waste thermal energy to electricity

"Converting waste heat to electrical energy can be a reality by using a rectenna, a combination of high frequency antenna and a tunnel diode," wrote three clean energy engineers from the University of South Florida's Clean Energy Resource Center.

According to article co-author Yogi Goswami, thermal radiation, or the infrared (IR) portion of the electromagnetic spectrum, is often an overlooked source of renewable energy and more than half of the power provided by the sun - both directed and re-radiated - lies in the infrared part of the spectrum.

"If the IR radiation potential of the earth could be harvested with 75 percent efficiency, it would generate more energy per unit area than a fixed orientation solar cell located in a prime solar location," said study co-author Subramanian Krishnan.

Rectenna components (antenna and rectifier) used to recapture wasted IR radiation is developed from the decades old concept of using the wave nature of light rather than its thermal effect. Recent advances in nanotechnology have made possible the harvesting of solar energy by rectenna more viable, they said. Recent research has shown that rectenna can be developed at IR frequencies with existing technology and used for IR energy conversion.

For co-author Elias Stefanokos, the approach of using a rectenna in combination with a plasmonic blackbody emitter would improve efficiency of all systems.

"This research will significantly increase the efficiency of photovoltaic cells, at little added cost, by integrating the plasmonic emitter with the cell," said Stefanokos.

Their paper presents the current state-of-the-art in the field of rectenna-based conversion with a focus on its critical components.

Nanotechnology solutions for greenhouse light

"Farmers are at the mercy of weather that can cause damage to their crops," wrote a team of physicists from the University of South Florida. "Consequently, greenhouse farming and urban agriculture are being looked at as a more efficient and cost effective way to grow produce."

Sarath Witanachchi, Marek Merlak and Prasanna Mahawela, of the USF Department of Physics, presented the specifics for a new nanophosphor-based electroluminesence lighting device that caters to the exact wavelengths of light required for photosynthesis in indoor, hydroponic agriculture. The new, nanotechnology-based grow light also has the potential to reduce energy costs significantly."

"Conventional technologies used in today's agriculture are inefficient and lead to natural resource waste and degrade the environment," said Witanachchi. "Urban agriculture will become the choice in the future. Nanophosphors required to fabricate the active layer of the electroluminescence device are grown by a microwave plasma process, which was developed at the University of South Florida. This process enables the growth of crystalline nanophosphors directly on a substrate as a uniform coating without further processing steps."

The National Academy of Inventors® is a 501c3 non-profit organization comprised of U.S. and international universities and non-profit research institutes. It was founded in 2010 to recognize and encourage inventors with a patent issued from the U.S. Patent and Trademark Office, enhance the visibility of academic technology and innovation, encourage the disclosure of intellectual property, educate and mentor innovative students, and translate the inventions of its members to benefit society. Email web www.academyofinventors.org

####

For more information, please click here

Contacts:
Technology and Innovation
University of South Florida
Office of Research & Innovation
3702 Spectrum Blvd., Suite 175
Tampa, Florida, 33612 USA
Tel: +1-813-974-1347

Copyright © University of South Florida

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Discoveries

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Announcements

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Environment

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Plastic nanoparticles also harm freshwater organisms October 18th, 2014

New Nanocomposites Help Elimination of Toxic Dyes October 15th, 2014

Energy

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Magnetic mirrors enable new technologies by reflecting light in uncanny ways October 16th, 2014

Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven October 14th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Graphenea opens US branch October 16th, 2014

NTU develops ultra-fast charging batteries that last 20 years October 14th, 2014

Electrically conductive plastics promising for batteries, solar cells October 10th, 2014

Solar/Photovoltaic

Magnetic mirrors enable new technologies by reflecting light in uncanny ways October 16th, 2014

Dyesol Signs Letter of Intent with Tata Steel October 13th, 2014

DNA nano-foundries cast custom-shaped metal nanoparticles: DNA's programmable assembly is leveraged to form precise 3D nanomaterials for disease detection, environmental testing, electronics and beyond October 10th, 2014

Over 100 European experts meet in Barcelona thanks to a COST Action coordinated from ICN2: The ISOS-7 Summit discusses the future of organic photovoltaic devices October 7th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE