Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New energy technologies promise brighter future

Abstract:
In three studies published in the current issue of Technology and Innovation - Proceedings of the National Academy of Inventors® ( https://www.cognizantcommunication.com/component/content/article/563 ), innovators unveil creative technologies that could change our sources of energy, change our use of energy, and change our lives.

New energy technologies promise brighter future

Tampa, FL | Posted on November 22nd, 2012

Untapped energy in the oceans

The kinetic energy in the Florida Current and in Florida's ocean waves can be captured and used, said Howard P. Hanson of the Southeast National Marine Renewable Energy Center at Florida Atlantic University.

"Capturing the kinetic energy of the Florida Current will require both materials advances and new designs for marine current turbines and their efficient deployment," said Hanson. "The hydrokinetic energy of tidal and open-currents, as well as ocean waves, and the thermal potential of the oceanic stratification, can be recovered using ocean thermal conversion technology."

Hanson calls this concept "marine renewable energy," or MRE, and noted in his article that the U.S. Department of Energy has formed three national MRE centers to investigate the resource potential in the oceans and to advance the technology for recovering MRE.

Nanoscale "rectennas" can convert waste thermal energy to electricity

"Converting waste heat to electrical energy can be a reality by using a rectenna, a combination of high frequency antenna and a tunnel diode," wrote three clean energy engineers from the University of South Florida's Clean Energy Resource Center.

According to article co-author Yogi Goswami, thermal radiation, or the infrared (IR) portion of the electromagnetic spectrum, is often an overlooked source of renewable energy and more than half of the power provided by the sun - both directed and re-radiated - lies in the infrared part of the spectrum.

"If the IR radiation potential of the earth could be harvested with 75 percent efficiency, it would generate more energy per unit area than a fixed orientation solar cell located in a prime solar location," said study co-author Subramanian Krishnan.

Rectenna components (antenna and rectifier) used to recapture wasted IR radiation is developed from the decades old concept of using the wave nature of light rather than its thermal effect. Recent advances in nanotechnology have made possible the harvesting of solar energy by rectenna more viable, they said. Recent research has shown that rectenna can be developed at IR frequencies with existing technology and used for IR energy conversion.

For co-author Elias Stefanokos, the approach of using a rectenna in combination with a plasmonic blackbody emitter would improve efficiency of all systems.

"This research will significantly increase the efficiency of photovoltaic cells, at little added cost, by integrating the plasmonic emitter with the cell," said Stefanokos.

Their paper presents the current state-of-the-art in the field of rectenna-based conversion with a focus on its critical components.

Nanotechnology solutions for greenhouse light

"Farmers are at the mercy of weather that can cause damage to their crops," wrote a team of physicists from the University of South Florida. "Consequently, greenhouse farming and urban agriculture are being looked at as a more efficient and cost effective way to grow produce."

Sarath Witanachchi, Marek Merlak and Prasanna Mahawela, of the USF Department of Physics, presented the specifics for a new nanophosphor-based electroluminesence lighting device that caters to the exact wavelengths of light required for photosynthesis in indoor, hydroponic agriculture. The new, nanotechnology-based grow light also has the potential to reduce energy costs significantly."

"Conventional technologies used in today's agriculture are inefficient and lead to natural resource waste and degrade the environment," said Witanachchi. "Urban agriculture will become the choice in the future. Nanophosphors required to fabricate the active layer of the electroluminescence device are grown by a microwave plasma process, which was developed at the University of South Florida. This process enables the growth of crystalline nanophosphors directly on a substrate as a uniform coating without further processing steps."

The National Academy of Inventors® is a 501c3 non-profit organization comprised of U.S. and international universities and non-profit research institutes. It was founded in 2010 to recognize and encourage inventors with a patent issued from the U.S. Patent and Trademark Office, enhance the visibility of academic technology and innovation, encourage the disclosure of intellectual property, educate and mentor innovative students, and translate the inventions of its members to benefit society. Email web www.academyofinventors.org

####

For more information, please click here

Contacts:
Technology and Innovation
University of South Florida
Office of Research & Innovation
3702 Spectrum Blvd., Suite 175
Tampa, Florida, 33612 USA
Tel: +1-813-974-1347

Copyright © University of South Florida

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Discoveries

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Announcements

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Environment

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

New approach on research and design for CQD catalysts in World Scientific NANO August 2nd, 2017

Magnetized viruses attack harmful bacteria: Rice, China team uses phage-enhanced nanoparticles to kill bacteria that foul water treatment systems August 2nd, 2017

Energy

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Rice U. scientists map ways forward for lithium-ion batteries for extreme environments: Paper details developments toward high-temperature batteries July 27th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

Solar/Photovoltaic

Fewer defects from a 2-D approach August 15th, 2017

Controlled manipulation: Scientists at FAU are investigating the properties of hybrid systems consisting of carbon nanostructures and a dye August 8th, 2017

Simultaneous Design and Nanomanufacturing Speeds Up Fabrication: Method enhances broadband light absorption in solar cells August 5th, 2017

Atomic movies may help explain why perovskite solar cells are more efficient: SLAC's ultrafast 'electron camera' captures surprising atomic motions in these next-generation materials July 28th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project