Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Capturing living cells in micro pyramids

Chondrocyte captured inside a micro pyramid, interacting with its neighbours
Chondrocyte captured inside a micro pyramid, interacting with its neighbours

Abstract:
A field full of pyramids, but on a micro scale. Each of the pyramids hides a living cell. Thanks to 3D micro- and nano scale fabrication, promising new applications can be found. One of them is applying the micro pyramids for cell research: thanks to the open ‘walls' of the pyramids, the cells interact. Scientists of the research institutes MESA+ and MIRA of the University of Twente in The Netherlands present this new technology and first applications in Small journal of the beginning of December.

Capturing living cells in micro pyramids

Enschede, Netherlands | Posted on November 22nd, 2012

Most of the cell studies take place in 2D: this is not a natural situation, because cells organize themselves in another way than in the human body. If you give the cells room to move in three dimensions, the natural situation is approached in a better way while capturing them in an array. This is possible in the ‘open pyramids' fabricated in the NanoLab of the MESA+ Institute for Nanotechnology of the University of Twente.

Tiny corner remains filled

The cleanroom technology applied for this, has been discovered by coincidence and is now called ‘corner lithography'. If you join a number of flat silicon surface in a sharp corner, it is possible to deposit another material on them. After having removed the material, however, a small amount of material remains in the corner. This tiny tip can be used for an Atomic Force Microscope, or, in this case, for forming a micro pyramid.

Catching cells

In cooperation with UT's MIRA Institute for Biomedical Technology and Technical Medicine, the nanoscientists have explored the possibilities of applying the pyramids as ‘cages' for cells. First experiments with polystyrene balls worked out well. The next experiments involved capturing chondrocytes, cells forming cartilage. Moved by capillary fluid flow, these cells automatically ‘fall' into the pyramid through a hole at the bottom. Soon after they settle in their 3D cage, cells begin to interact with cells in adjacent pyramids. Changes in the phenotype of the cell can now be studied in a better way than in the usual 2D situation. It is therefore a promising tool to be used in for example tissue regeneration research.

The Dutch scientists expect to develop extensions to this technology: the edges of the pyramid can be made hollow and function as fluid channels. Between the pyramids, it is also possible to create nanofluidic channels, for example used to feed the cells.


Full bibliographic informationThe article ‘3D Nanofabrication of Fluidic Components by Corner Lithography' by Erwin Berenschot, Narges Barouni, Bart Schurink, Joost van Honschoten†, Remco Sanders, Roman Truckenmuller, Henri Jansen, Miko Elwenspoek, Aart van Apeldoorn en Niels Tas will be published as an ‘inside cover' article in Wiley's Small journal. It is already available online.

####

For more information, please click here

Contacts:
Wiebe van der Veen
+31612185692

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Microfluidics/Nanofluidics

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

POSTECH researchers develop a control algorithm for more accurate lab-on-a-chip devices April 6th, 2016

Microfluidic devices gently rotate small organisms and cells March 24th, 2016

New microwave imaging approach opens a nanoscale view on processes in liquids: Technique can explore technologically and medically important processes that occur at boundaries between liquids and solids, such as in batteries or along cell membranes March 16th, 2016

Nanomedicine

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Discoveries

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Announcements

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Nanobiotechnology

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Supercrystals with new architecture can enhance drug synthesis May 24th, 2016

Nanoscale Trojan horses treat inflammation May 24th, 2016

Printing/Lithography/Inkjet/Inks

Physicists create first metamaterial with rewritable magnetic ordering May 23rd, 2016

Electrically Conductive Graphene Ink Enables Printing of Biosensors April 23rd, 2016

Highlights from the Graphene Flagship April 22nd, 2016

Penn engineers develop first transistors made entirely of nanocrystal 'inks April 11th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic