Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > CHESS X-rays help characterize organic transistors

Advanced Materials
The cover image shows the X-ray microbeam footprint on the gate electrode of an organic transistor and scattered X-ray beams emanating from the molecular film.
Advanced Materials

The cover image shows the X-ray microbeam footprint on the gate electrode of an organic transistor and scattered X-ray beams emanating from the molecular film.

Abstract:
Plastic electronics, in which an organic material replaces silicon, hold promise for low-cost, flexible electronics. But understanding and controlling these materials' microstructures is an ongoing challenge.

CHESS X-rays help characterize organic transistors

Ithaca, NY | Posted on November 20th, 2012

With the help of the D1 X-ray beamline at the Cornell High Energy Synchrotron Source (CHESS), scientists have come many steps closer to designing the perfect organic semiconductor by spatially mapping the microstructure, texture, grain sizes and grain orientations of organic semiconductor thin films.

Detlef Smilgies, senior research associate at CHESS, is co-author of an article in the Nov. 2 issue of the journal Advanced Materials (Vol. 24, No. 41), featured on the journal's cover, that describes this direct structural mapping.

The study's senior author, Aram Amassian of King Abdullah University of Science and Technology (KAUST), is a former Cornell postdoctoral associate, and the first author, Amassian's research associate Ruipeng Li, is a former visiting graduate student at CHESS; both are frequent Cornell synchrotron users.

The performance of a transistor is usually described by the mobility of its charge carriers -- the quicker the charge carriers can move through the material, the better. Charge mobility can be hampered by grain boundaries, which are the interfaces of individual grains in a crystal, either because they are misaligned or growing on different planes.

These interfaces play an important role in the texture of the crystalline organic material. A basic transistor typically has a source, where charge carriers enter; a drain, where the charge carriers exit; and a gate in the middle, which regulates the mobility of the charge carriers. In the most common architecture, the organic semiconductor is printed on a substrate pre-patterned with source and drain electrodes. The organic layer can thus form different growth planes on different parts of the substrate, and it's hard to tell fundamentally which growth planes are best to carry charges.

To shed some light on this question, the researchers used a technique called microbeam grazing incidence wide-angle X-ray scattering to probe how the organic transistor's molecular structure changed within the gate channel of the transistor, i.e., between the source and the drain electrodes. The microbeam at CHESS D1 station was obtained with an X-ray-focusing capillary -- an optical device that helps narrow the X-ray beam -- only 10 microns wide or one-fifth the width of a human hair.

This microbeam intercepted the transistors at a low angle of 2 degrees; the resulting wide-angle scattered X-rays were collected with a high-resolution camera. The scientists found that a particular growth plane that formed on the gold electrode extended up to tens of microns into the channel. Then a mix of planes occurred in the center of the channel.

When the channel width was below 20 microns, a favorable orientation prevailed, and the devices had good performance, while wider channels with mixed structures performed more poorly, with lower carrier mobility.

A chemical modification of the electrode surfaces with a fluorinated self-assembled monolayer was found to promote the formation of the favorable growth plane, which extended well into the channel. In some cases this growth plane bridged the channel entirely, significantly reducing the bottlenecks to charge transport of the untreated device.

Smilgies developed the instrumentation used in the experiment and helped with calibration and characterization of the microbeam used in the study. D1, he noted, is especially suited for in-situ studies of soft materials -- techniques that Smilgies has developed over the past 12 years at CHESS.

Oana Jurchescu and her student Jeremy Ward at Wake Forest University supplied the devices; John Anthony and Marcia Payne at the University of Kentucky provided the molecular material. CHESS is supported by the National Science Foundation and National Institutes of Health. The study was also supported by the KAUST Office of Competitive Research Funds, which funds part of the D1 beamline instrumentation.

####

For more information, please click here

Contacts:
Media Contact:
Syl Kacapyr
(607) 255-7701


Cornell Chronicle:
Anne Ju
(607) 255-9735

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Flexible Electronics

Roll up your screen and stow it away? Tel Aviv University researchers develop molecular backbone of super-slim, bendable digital displays March 30th, 2015

Haydale Announce Dedicated Graphene Inks Manufacturing Capability March 25th, 2015

News and information

Roll up your screen and stow it away? Tel Aviv University researchers develop molecular backbone of super-slim, bendable digital displays March 30th, 2015

Princess Margaret scientists convert microbubbles to nanoparticles: Harnessing light to advance tumor imaging, provide platform for targeted treatment March 30th, 2015

Wrapping carbon nanotubes in polymers enhances their performance: Scientists at Japan's Kyushu University say polymer-wrapped carbon nanotubes hold much promise in biotechnology and energy applications March 30th, 2015

Tokyo Institute of Technology research: Catalyst redefines rate limitations in ammonia production March 30th, 2015

Imaging

'Atomic chicken-wire' is key to faster DNA sequencing March 30th, 2015

FEI Technology Award of the German Neuroscience Society Goes to Benjamin Judkewitz of the University of Berlin: Bi-annual award honors excellence in brain research during the German Neuroscience Society’s Annual Meeting, held 18-21 March 2015 March 26th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

Thin films

LAMDAMAP 2015 hosted by the University March 26th, 2015

Govt.-Legislation/Regulation/Funding/Policy

SUNY Poly CNSE and Title Sponsor SEFCU Name Capital Region Teams Advancing to the Final Round of the 2015 New York Business Plan Competition March 30th, 2015

Princess Margaret scientists convert microbubbles to nanoparticles: Harnessing light to advance tumor imaging, provide platform for targeted treatment March 30th, 2015

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Chip Technology

Next important step toward quantum computer: Scientists at the University of Bonn have succeeded in linking 2 different quantum systems March 30th, 2015

State-of-the-art online system unveiled to pinpoint metrology software accuracy March 27th, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

NXP and GLOBALFOUNDRIES Announce Production of 40nm Embedded Non-Volatile Memory Technology: Co-developed technology to leverage GLOBALFOUNDRIES 40nm process technology platform March 24th, 2015

Self Assembly

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Four Scientists With Major Contributions to Research at Brookhaven Lab Named American Physical Society Fellows March 17th, 2015

Nanotubes self-organize and wiggle: Evolution of a nonequilibrium system demonstrates MEPP February 10th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Announcements

Princess Margaret scientists convert microbubbles to nanoparticles: Harnessing light to advance tumor imaging, provide platform for targeted treatment March 30th, 2015

Wrapping carbon nanotubes in polymers enhances their performance: Scientists at Japan's Kyushu University say polymer-wrapped carbon nanotubes hold much promise in biotechnology and energy applications March 30th, 2015

Tokyo Institute of Technology research: Catalyst redefines rate limitations in ammonia production March 30th, 2015

Next important step toward quantum computer: Scientists at the University of Bonn have succeeded in linking 2 different quantum systems March 30th, 2015

Tools

'Atomic chicken-wire' is key to faster DNA sequencing March 30th, 2015

LAMDAMAP 2015 hosted by the University March 26th, 2015

FEI Technology Award of the German Neuroscience Society Goes to Benjamin Judkewitz of the University of Berlin: Bi-annual award honors excellence in brain research during the German Neuroscience Society’s Annual Meeting, held 18-21 March 2015 March 26th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE