Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > CHESS X-rays help characterize organic transistors

Advanced Materials
The cover image shows the X-ray microbeam footprint on the gate electrode of an organic transistor and scattered X-ray beams emanating from the molecular film.
Advanced Materials

The cover image shows the X-ray microbeam footprint on the gate electrode of an organic transistor and scattered X-ray beams emanating from the molecular film.

Abstract:
Plastic electronics, in which an organic material replaces silicon, hold promise for low-cost, flexible electronics. But understanding and controlling these materials' microstructures is an ongoing challenge.

CHESS X-rays help characterize organic transistors

Ithaca, NY | Posted on November 20th, 2012

With the help of the D1 X-ray beamline at the Cornell High Energy Synchrotron Source (CHESS), scientists have come many steps closer to designing the perfect organic semiconductor by spatially mapping the microstructure, texture, grain sizes and grain orientations of organic semiconductor thin films.

Detlef Smilgies, senior research associate at CHESS, is co-author of an article in the Nov. 2 issue of the journal Advanced Materials (Vol. 24, No. 41), featured on the journal's cover, that describes this direct structural mapping.

The study's senior author, Aram Amassian of King Abdullah University of Science and Technology (KAUST), is a former Cornell postdoctoral associate, and the first author, Amassian's research associate Ruipeng Li, is a former visiting graduate student at CHESS; both are frequent Cornell synchrotron users.

The performance of a transistor is usually described by the mobility of its charge carriers -- the quicker the charge carriers can move through the material, the better. Charge mobility can be hampered by grain boundaries, which are the interfaces of individual grains in a crystal, either because they are misaligned or growing on different planes.

These interfaces play an important role in the texture of the crystalline organic material. A basic transistor typically has a source, where charge carriers enter; a drain, where the charge carriers exit; and a gate in the middle, which regulates the mobility of the charge carriers. In the most common architecture, the organic semiconductor is printed on a substrate pre-patterned with source and drain electrodes. The organic layer can thus form different growth planes on different parts of the substrate, and it's hard to tell fundamentally which growth planes are best to carry charges.

To shed some light on this question, the researchers used a technique called microbeam grazing incidence wide-angle X-ray scattering to probe how the organic transistor's molecular structure changed within the gate channel of the transistor, i.e., between the source and the drain electrodes. The microbeam at CHESS D1 station was obtained with an X-ray-focusing capillary -- an optical device that helps narrow the X-ray beam -- only 10 microns wide or one-fifth the width of a human hair.

This microbeam intercepted the transistors at a low angle of 2 degrees; the resulting wide-angle scattered X-rays were collected with a high-resolution camera. The scientists found that a particular growth plane that formed on the gold electrode extended up to tens of microns into the channel. Then a mix of planes occurred in the center of the channel.

When the channel width was below 20 microns, a favorable orientation prevailed, and the devices had good performance, while wider channels with mixed structures performed more poorly, with lower carrier mobility.

A chemical modification of the electrode surfaces with a fluorinated self-assembled monolayer was found to promote the formation of the favorable growth plane, which extended well into the channel. In some cases this growth plane bridged the channel entirely, significantly reducing the bottlenecks to charge transport of the untreated device.

Smilgies developed the instrumentation used in the experiment and helped with calibration and characterization of the microbeam used in the study. D1, he noted, is especially suited for in-situ studies of soft materials -- techniques that Smilgies has developed over the past 12 years at CHESS.

Oana Jurchescu and her student Jeremy Ward at Wake Forest University supplied the devices; John Anthony and Marcia Payne at the University of Kentucky provided the molecular material. CHESS is supported by the National Science Foundation and National Institutes of Health. The study was also supported by the KAUST Office of Competitive Research Funds, which funds part of the D1 beamline instrumentation.

####

For more information, please click here

Contacts:
Media Contact:
Syl Kacapyr
(607) 255-7701


Cornell Chronicle:
Anne Ju
(607) 255-9735

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Yale researchersí technology turns wasted heat into power June 27th, 2016

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Imaging

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Flexible Electronics

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

New nanomaterial offers promise in bendable, wearable electronic devices: Electroplated polymer makes transparent, highly conductive, ultrathin film June 13th, 2016

Thin films

Novel capping strategy improves stability of perovskite nanocrystals: Study addresses instability issues with organometal-halide perovskites, a promising class of materials for solar cells, LEDs, and other applications June 13th, 2016

New nanomaterial offers promise in bendable, wearable electronic devices: Electroplated polymer makes transparent, highly conductive, ultrathin film June 13th, 2016

Perovskite solar cells surpass 20 percent efficiency: EPFL researchers are pushing the limits of perovskite solar cell performance by exploring the best way to grow these crystals June 13th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

Titan shines light on high-temperature superconductor pathway: Simulation demonstrates how superconductivity arises in cuprates' pseudogap phase June 22nd, 2016

Chip Technology

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

Nanometrics to Participate in the 8th Annual CEO Investor Summit: Investor Event Held Concurrently with SEMICON West 2016 in San Francisco June 22nd, 2016

Self Assembly

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

DNA shaping up to be ideal framework for rationally designed nanostructures: Shaped DNA frames that precisely link nanoparticles into different structures offer a platform for designing functional nanomaterials June 14th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Searching for a nanotech self-organizing principle May 1st, 2016

Announcements

Yale researchersí technology turns wasted heat into power June 27th, 2016

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Tools

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic