Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Important progress for spintronics: A spin amplifier to be used in room temperature

A schematic picture of the defect-engineered spin amplifier demonstrated in this work. The wave pattern symbolizes the time variation of the spin signal, namely the difference between the numbers of spin-up and spin-down electrons. The red and blue arrows represent the period with more spin-up and spin-down electrons, respectively. The amplitude of the wave reflects the strength of the spin signal, which is weak before entering the spin amplifier but becomes stronger when exiting. The defects that have enabled the spin-amplification functionality of a non-magnetic semiconductor are indicated by the yellow balls, each with a spin-polarized localized electron (indicated by the red and blue arrows). The spin direction of this localized electron rapidly follows the sign of the input spin signal, which serves to only attract and remove the incoming electrons with an undesired spin orientation. This leads to a significant enhancement in the spin polarization of the electrons passing the spin amplifier, giving rise to a strongly amplified output spin signal that has truthfully cloned the exactly same time-varying function and thus the spin-encoded information of the input spin signal.

Credit: Weimin Chen/Adv. Mater. 2012, DOI 10.1002/adma.20120597
A schematic picture of the defect-engineered spin amplifier demonstrated in this work. The wave pattern symbolizes the time variation of the spin signal, namely the difference between the numbers of spin-up and spin-down electrons. The red and blue arrows represent the period with more spin-up and spin-down electrons, respectively. The amplitude of the wave reflects the strength of the spin signal, which is weak before entering the spin amplifier but becomes stronger when exiting. The defects that have enabled the spin-amplification functionality of a non-magnetic semiconductor are indicated by the yellow balls, each with a spin-polarized localized electron (indicated by the red and blue arrows). The spin direction of this localized electron rapidly follows the sign of the input spin signal, which serves to only attract and remove the incoming electrons with an undesired spin orientation. This leads to a significant enhancement in the spin polarization of the electrons passing the spin amplifier, giving rise to a strongly amplified output spin signal that has truthfully cloned the exactly same time-varying function and thus the spin-encoded information of the input spin signal.

Credit: Weimin Chen/Adv. Mater. 2012, DOI 10.1002/adma.20120597

Abstract:
A fundamental cornerstone for spintronics that has been missing up until now has been constructed by a team of physicists at Linköping University in Sweden. It's the world's first spin amplifier that can be used at room temperature.

Important progress for spintronics: A spin amplifier to be used in room temperature

Linköping, Sweden | Posted on November 17th, 2012

Great hopes have been placed on spintronics as the next big paradigm shift in the field of electronics. Spintronics combines microelectronics, which is built on the charge of electrons, with the magnetism that originates in the electrons' spin. This lays the foundation for entirely new applications that fire the imagination. The word "spin" aims at describing how electrons spin around, much like how the Earth spins on its own axis.

But turning theory into practice requires amplifying these very weak signals. Instead of transistors, rectifiers, and so on, the building blocks of spintronics will be formed by things like spin filters, spin amplifiers, and spin detectors. Through regulating and controlling electron spin, it will be possible to store data more densely and process it many times faster - and with greater energy efficiency - than today's technology.

In 2009, an LiU group from the Department of Functional Electronic Material, led by Professor Weimin Chen, presented a new type of spin filter that works at room temperature. The filter lets through electrons that have the desired spin direction, screening out the others. This function is crucial for constructing new types of components such as spin diodes and spin lasers.

Now the same group, in collaboration with colleagues from Germany and the United States, has published an article in the highly-ranked journal Advanced Materials, where they present an effective spin amplifier based on a non-magnetic semiconductor. The amplification occurs through deliberate defects in the form of extra gallium atoms introduced into an alloy of gallium, indium, nitrogen and arsenic.

A component of this kind can be set anywhere along a path of spin transport to amplify signals that have weakened along the way. By combining this with a spin detector, it may be possible to read even extremely weak spin signals.

"It's an advance that blazes a trail for a solution to the problem of controlling and detecting electron spin at room temperature, which is a prerequisite for the breakthrough of spintronics," says Weimin Chen.

Article: Room-temperature electron spin amplifier based on Ga(In)NAs alloys by Y. Puttisong, I.A. Buyanova, A.J. Ptak, C.W. Tu, L. Geelhaar, H. Richert and W.M. Chen. Advanced Materials online 26 October 2012. DOI 10.1002/adma.20120597

####

For more information, please click here

Contacts:
Weimin Chen

46-132-817-954-670-512

Copyright © Linköping University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Physics

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Nano-pea pod model widens electronics applications: A new theoretical model explains how a nanostructure, such as the nano-pea pod, can exhibit localised electrons September 4th, 2014

Cool Calculations for Cold Atoms: New theory of universal three-body encounters September 2nd, 2014

Spintronics

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Molecular engineers record an electron's quantum behavior August 14th, 2014

Diamond defect interior design: Planting imperfections called 'NV centers' at specific spots within a diamond lattice could advance quantum computing and atomic-scale measurement August 5th, 2014

University of Illinois study advances limits for ultrafast nano-devices July 10th, 2014

Discoveries

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Announcements

New NPZ100-403 Piezo Stage from nPoint Inc. September 17th, 2014

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE