Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Important progress for spintronics: A spin amplifier to be used in room temperature

A schematic picture of the defect-engineered spin amplifier demonstrated in this work. The wave pattern symbolizes the time variation of the spin signal, namely the difference between the numbers of spin-up and spin-down electrons. The red and blue arrows represent the period with more spin-up and spin-down electrons, respectively. The amplitude of the wave reflects the strength of the spin signal, which is weak before entering the spin amplifier but becomes stronger when exiting. The defects that have enabled the spin-amplification functionality of a non-magnetic semiconductor are indicated by the yellow balls, each with a spin-polarized localized electron (indicated by the red and blue arrows). The spin direction of this localized electron rapidly follows the sign of the input spin signal, which serves to only attract and remove the incoming electrons with an undesired spin orientation. This leads to a significant enhancement in the spin polarization of the electrons passing the spin amplifier, giving rise to a strongly amplified output spin signal that has truthfully cloned the exactly same time-varying function and thus the spin-encoded information of the input spin signal.

Credit: Weimin Chen/Adv. Mater. 2012, DOI 10.1002/adma.20120597
A schematic picture of the defect-engineered spin amplifier demonstrated in this work. The wave pattern symbolizes the time variation of the spin signal, namely the difference between the numbers of spin-up and spin-down electrons. The red and blue arrows represent the period with more spin-up and spin-down electrons, respectively. The amplitude of the wave reflects the strength of the spin signal, which is weak before entering the spin amplifier but becomes stronger when exiting. The defects that have enabled the spin-amplification functionality of a non-magnetic semiconductor are indicated by the yellow balls, each with a spin-polarized localized electron (indicated by the red and blue arrows). The spin direction of this localized electron rapidly follows the sign of the input spin signal, which serves to only attract and remove the incoming electrons with an undesired spin orientation. This leads to a significant enhancement in the spin polarization of the electrons passing the spin amplifier, giving rise to a strongly amplified output spin signal that has truthfully cloned the exactly same time-varying function and thus the spin-encoded information of the input spin signal.

Credit: Weimin Chen/Adv. Mater. 2012, DOI 10.1002/adma.20120597

Abstract:
A fundamental cornerstone for spintronics that has been missing up until now has been constructed by a team of physicists at Linköping University in Sweden. It's the world's first spin amplifier that can be used at room temperature.

Important progress for spintronics: A spin amplifier to be used in room temperature

Linköping, Sweden | Posted on November 17th, 2012

Great hopes have been placed on spintronics as the next big paradigm shift in the field of electronics. Spintronics combines microelectronics, which is built on the charge of electrons, with the magnetism that originates in the electrons' spin. This lays the foundation for entirely new applications that fire the imagination. The word "spin" aims at describing how electrons spin around, much like how the Earth spins on its own axis.

But turning theory into practice requires amplifying these very weak signals. Instead of transistors, rectifiers, and so on, the building blocks of spintronics will be formed by things like spin filters, spin amplifiers, and spin detectors. Through regulating and controlling electron spin, it will be possible to store data more densely and process it many times faster - and with greater energy efficiency - than today's technology.

In 2009, an LiU group from the Department of Functional Electronic Material, led by Professor Weimin Chen, presented a new type of spin filter that works at room temperature. The filter lets through electrons that have the desired spin direction, screening out the others. This function is crucial for constructing new types of components such as spin diodes and spin lasers.

Now the same group, in collaboration with colleagues from Germany and the United States, has published an article in the highly-ranked journal Advanced Materials, where they present an effective spin amplifier based on a non-magnetic semiconductor. The amplification occurs through deliberate defects in the form of extra gallium atoms introduced into an alloy of gallium, indium, nitrogen and arsenic.

A component of this kind can be set anywhere along a path of spin transport to amplify signals that have weakened along the way. By combining this with a spin detector, it may be possible to read even extremely weak spin signals.

"It's an advance that blazes a trail for a solution to the problem of controlling and detecting electron spin at room temperature, which is a prerequisite for the breakthrough of spintronics," says Weimin Chen.

Article: Room-temperature electron spin amplifier based on Ga(In)NAs alloys by Y. Puttisong, I.A. Buyanova, A.J. Ptak, C.W. Tu, L. Geelhaar, H. Richert and W.M. Chen. Advanced Materials online 26 October 2012. DOI 10.1002/adma.20120597

####

For more information, please click here

Contacts:
Weimin Chen

46-132-817-954-670-512

Copyright © Linköping University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Rice's Stephan Link honored for nanoscience research: The Welch Foundation honors ‘rising star’ with $100,000 Hackerman Award February 26th, 2015

Indefinite Life Extension Activists Organize Online Demonstration February 26th, 2015

Renishaw and Bruker team up for a workshop on TERS and co-localised AFM Raman February 26th, 2015

Physics

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Warming up the world of superconductors: Clusters of aluminum metal atoms become superconductive at surprisingly high temperatures February 25th, 2015

Quantum many-body systems on the way back to equilibrium: Advances in experimental and theoretical physics enable a deeper understanding of the dynamics and properties of quantum many-body systems February 25th, 2015

Simulating superconducting materials with ultracold atoms: Rice physicists build superconductor analog, observe antiferromagnetic order February 23rd, 2015

Spintronics

Insight into inner magnetic layers: Measurements at BESSY II have shown how spin filters forming within magnetic sandwiches influence tunnel magnetoresistance -- results that can help in designing spintronic component- February 17th, 2015

A new spin on spintronics: Michigan team tests radiation-resistant spintronic material, possibly enabling electronic devices that will work in harsh environments February 17th, 2015

Nanoscale Mirrored Cavities Amplify, Connect Quantum Memories: Advance could lead to quantum computing and the secure transfer of information over long-distance fiber optic networks January 28th, 2015

Piezoelectricity in a 2-D semiconductor: Berkeley Lab researchers discovery of piezoelectricty in molybdenum disulfide holds promise for future MEMS December 22nd, 2014

Discoveries

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Simple, Cost-Efficient Method Used to Determine Toxicants Growing in Pistachio February 26th, 2015

Announcements

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Bruker-Sponsored Sixth AFM BioMed Conference Highlights Increasing Impact of AFM in Biological Applications February 26th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE