Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Important progress for spintronics: A spin amplifier to be used in room temperature

A schematic picture of the defect-engineered spin amplifier demonstrated in this work. The wave pattern symbolizes the time variation of the spin signal, namely the difference between the numbers of spin-up and spin-down electrons. The red and blue arrows represent the period with more spin-up and spin-down electrons, respectively. The amplitude of the wave reflects the strength of the spin signal, which is weak before entering the spin amplifier but becomes stronger when exiting. The defects that have enabled the spin-amplification functionality of a non-magnetic semiconductor are indicated by the yellow balls, each with a spin-polarized localized electron (indicated by the red and blue arrows). The spin direction of this localized electron rapidly follows the sign of the input spin signal, which serves to only attract and remove the incoming electrons with an undesired spin orientation. This leads to a significant enhancement in the spin polarization of the electrons passing the spin amplifier, giving rise to a strongly amplified output spin signal that has truthfully cloned the exactly same time-varying function and thus the spin-encoded information of the input spin signal.

Credit: Weimin Chen/Adv. Mater. 2012, DOI 10.1002/adma.20120597
A schematic picture of the defect-engineered spin amplifier demonstrated in this work. The wave pattern symbolizes the time variation of the spin signal, namely the difference between the numbers of spin-up and spin-down electrons. The red and blue arrows represent the period with more spin-up and spin-down electrons, respectively. The amplitude of the wave reflects the strength of the spin signal, which is weak before entering the spin amplifier but becomes stronger when exiting. The defects that have enabled the spin-amplification functionality of a non-magnetic semiconductor are indicated by the yellow balls, each with a spin-polarized localized electron (indicated by the red and blue arrows). The spin direction of this localized electron rapidly follows the sign of the input spin signal, which serves to only attract and remove the incoming electrons with an undesired spin orientation. This leads to a significant enhancement in the spin polarization of the electrons passing the spin amplifier, giving rise to a strongly amplified output spin signal that has truthfully cloned the exactly same time-varying function and thus the spin-encoded information of the input spin signal.

Credit: Weimin Chen/Adv. Mater. 2012, DOI 10.1002/adma.20120597

Abstract:
A fundamental cornerstone for spintronics that has been missing up until now has been constructed by a team of physicists at Linköping University in Sweden. It's the world's first spin amplifier that can be used at room temperature.

Important progress for spintronics: A spin amplifier to be used in room temperature

Linköping, Sweden | Posted on November 17th, 2012

Great hopes have been placed on spintronics as the next big paradigm shift in the field of electronics. Spintronics combines microelectronics, which is built on the charge of electrons, with the magnetism that originates in the electrons' spin. This lays the foundation for entirely new applications that fire the imagination. The word "spin" aims at describing how electrons spin around, much like how the Earth spins on its own axis.

But turning theory into practice requires amplifying these very weak signals. Instead of transistors, rectifiers, and so on, the building blocks of spintronics will be formed by things like spin filters, spin amplifiers, and spin detectors. Through regulating and controlling electron spin, it will be possible to store data more densely and process it many times faster - and with greater energy efficiency - than today's technology.

In 2009, an LiU group from the Department of Functional Electronic Material, led by Professor Weimin Chen, presented a new type of spin filter that works at room temperature. The filter lets through electrons that have the desired spin direction, screening out the others. This function is crucial for constructing new types of components such as spin diodes and spin lasers.

Now the same group, in collaboration with colleagues from Germany and the United States, has published an article in the highly-ranked journal Advanced Materials, where they present an effective spin amplifier based on a non-magnetic semiconductor. The amplification occurs through deliberate defects in the form of extra gallium atoms introduced into an alloy of gallium, indium, nitrogen and arsenic.

A component of this kind can be set anywhere along a path of spin transport to amplify signals that have weakened along the way. By combining this with a spin detector, it may be possible to read even extremely weak spin signals.

"It's an advance that blazes a trail for a solution to the problem of controlling and detecting electron spin at room temperature, which is a prerequisite for the breakthrough of spintronics," says Weimin Chen.

Article: Room-temperature electron spin amplifier based on Ga(In)NAs alloys by Y. Puttisong, I.A. Buyanova, A.J. Ptak, C.W. Tu, L. Geelhaar, H. Richert and W.M. Chen. Advanced Materials online 26 October 2012. DOI 10.1002/adma.20120597

####

For more information, please click here

Contacts:
Weimin Chen

46-132-817-954-670-512

Copyright © Linköping University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Physics

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

Quantum physics on tap - Nano-sized faucet offers experimental support for longstanding quantum theory May 16th, 2015

Spintronics

New options for spintronic devices: Switching magnetism between 1 and 0 with low voltage near room temperature May 18th, 2015

Quantum 'gruyères' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

Drexel materials scientists putting a new spin on computing memory April 22nd, 2015

Discoveries

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

Announcements

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Engineering Phase Changes in Nanoparticle Arrays: Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials May 25th, 2015

Nanostructures Increase Corrosion Resistance in Metallic Body Implants May 24th, 2015

Iranian Scientists Use Magnetic Field to Transfer Anticancer Drug to Tumor Tissue May 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project