Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Key Property of Graphene Sustained Over Wide Ranges of Density and Energy

Abstract:
A collaboration led by researchers from the NIST Center for Nanoscale Science and Technology has shown for the first time that charge carriers in graphene continue to behave as massless particles, like photons, over wider ranges of both density and energy than previously measured or modeled.* Graphene, a single layer of carbon atoms, is a material of great scientific and technological interest in part because it conducts electrons at high speed. However, in order for graphene to achieve its promise as a component of future electronic devices, it is important to understand at a fundamental level how charge carriers in the material interact with each other.

Key Property of Graphene Sustained Over Wide Ranges of Density and Energy

Gaithersburg, MD | Posted on November 15th, 2012

The researchers used scanning tunneling spectroscopy measurements of the magnetic quantum energy levels of the graphene charge carriers to determine the changes in velocity of the charge carriers. Using a CNST-developed technique called "gate mapping scanning tunneling spectroscopy," the researchers measured the energy levels as they changed the density of the carriers in the graphene by applying different potentials between a conducting gate and the two-dimensional graphene sheet. They established that the graphene carriers retain a proportional relationship between energy and momentum—a "linear dispersion" characteristic of massless particles—across an unexpectedly broad range of energies and densities, from electrons to holes. They were also able to show that when the density of carriers in graphene is lowered, the effect of each electron on other electrons increases, resulting in higher velocities than expected. These surprising results are important both for understanding the physics of future graphene devices and because they will help guide the development of more accurate theoretical models of the interactions between electrons in two-dimensional systems.

*Renormalization of the graphene dispersion velocity determined from scanning tunneling spectroscopy, J. Chae, S. Jung, A. F. Young, C. R. Dean, L. Wang, Y. Gao, K. Watanabe, T. Taniguchi, J. Hone, K. L. Shepard, P. Kim, N. B. Zhitenev, and J. A. Stroscio, Physical Review Letters 109, 116802 (2012).

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Joseph Stroscio
301-975-3716

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

NIST Publication Database:

Journal Web Site:

Related News Press

Imaging

How Graphene–based Nanomaterials and Films Revolutionize Science Explained in July 9 Webinar Hosted by Park Systems June 29th, 2015

Keysight Technologies Introduces Ultrafast-Scanning 9500 Atomic Force Microscope: New Integrated Software, Hardware Delivers Unmatched Scan Rates June 29th, 2015

Rice University boots up powerful microscopes: New electron microscopes will capture images at subnanometer resolution June 29th, 2015

X-rays and electrons join forces to map catalytic reactions in real-time: New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions June 29th, 2015

News and information

The Hydrogen-Fuel cell will revolutionize the economy of the world: New non-platinum and nanosized catalyst for polymer electrolyte fuel cell June 29th, 2015

June 29th, 2015

Efforts to Use Smart Nanocarriers to Cure Leukemia Yield Promising Results June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

X-rays and electrons join forces to map catalytic reactions in real-time: New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions June 29th, 2015

Laboratories

X-rays and electrons join forces to map catalytic reactions in real-time: New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions June 29th, 2015

Helium 'balloons' offer new path to control complex materials June 27th, 2015

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

Graphene

Angstron Materials Appoints VP for Business Development And Engineering June 27th, 2015

Spain nanotechnology featured at NANO KOREA 2015 June 26th, 2015

Govt.-Legislation/Regulation/Funding/Policy

X-rays and electrons join forces to map catalytic reactions in real-time: New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions June 29th, 2015

Graphene breakthrough as Bosch creates magnetic sensor 100 times more sensitive than silicon equivalent June 28th, 2015

The peaks and valleys of silicon: Team of USC Viterbi School of Engineering Researchers introduce new layered semiconducting materials as silicon alternative June 27th, 2015

Building a better semiconductor: Research led by Michigan State University could someday lead to the development of new and improved semiconductors June 27th, 2015

Discoveries

The Hydrogen-Fuel cell will revolutionize the economy of the world: New non-platinum and nanosized catalyst for polymer electrolyte fuel cell June 29th, 2015

June 29th, 2015

Efforts to Use Smart Nanocarriers to Cure Leukemia Yield Promising Results June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Announcements

The Hydrogen-Fuel cell will revolutionize the economy of the world: New non-platinum and nanosized catalyst for polymer electrolyte fuel cell June 29th, 2015

June 29th, 2015

Efforts to Use Smart Nanocarriers to Cure Leukemia Yield Promising Results June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Tools

How Graphene–based Nanomaterials and Films Revolutionize Science Explained in July 9 Webinar Hosted by Park Systems June 29th, 2015

Keysight Technologies Introduces Ultrafast-Scanning 9500 Atomic Force Microscope: New Integrated Software, Hardware Delivers Unmatched Scan Rates June 29th, 2015

Rice University boots up powerful microscopes: New electron microscopes will capture images at subnanometer resolution June 29th, 2015

X-rays and electrons join forces to map catalytic reactions in real-time: New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions June 29th, 2015

Quantum nanoscience

The quantum spin Hall effect is a fundamental property of light June 25th, 2015

Lancaster University revolutionary quantum technology research receives funding boost June 22nd, 2015

UAB researchers design the most precise quantum thermometer to date: The device would be capable of measuring the temperature of a cell's interior June 7th, 2015

Visualizing the 'matrix': App provides insight into the quantum world of coupled nuclear spins June 3rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project