Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Key Property of Graphene Sustained Over Wide Ranges of Density and Energy

Abstract:
A collaboration led by researchers from the NIST Center for Nanoscale Science and Technology has shown for the first time that charge carriers in graphene continue to behave as massless particles, like photons, over wider ranges of both density and energy than previously measured or modeled.* Graphene, a single layer of carbon atoms, is a material of great scientific and technological interest in part because it conducts electrons at high speed. However, in order for graphene to achieve its promise as a component of future electronic devices, it is important to understand at a fundamental level how charge carriers in the material interact with each other.

Key Property of Graphene Sustained Over Wide Ranges of Density and Energy

Gaithersburg, MD | Posted on November 15th, 2012

The researchers used scanning tunneling spectroscopy measurements of the magnetic quantum energy levels of the graphene charge carriers to determine the changes in velocity of the charge carriers. Using a CNST-developed technique called "gate mapping scanning tunneling spectroscopy," the researchers measured the energy levels as they changed the density of the carriers in the graphene by applying different potentials between a conducting gate and the two-dimensional graphene sheet. They established that the graphene carriers retain a proportional relationship between energy and momentum—a "linear dispersion" characteristic of massless particles—across an unexpectedly broad range of energies and densities, from electrons to holes. They were also able to show that when the density of carriers in graphene is lowered, the effect of each electron on other electrons increases, resulting in higher velocities than expected. These surprising results are important both for understanding the physics of future graphene devices and because they will help guide the development of more accurate theoretical models of the interactions between electrons in two-dimensional systems.

*Renormalization of the graphene dispersion velocity determined from scanning tunneling spectroscopy, J. Chae, S. Jung, A. F. Young, C. R. Dean, L. Wang, Y. Gao, K. Watanabe, T. Taniguchi, J. Hone, K. L. Shepard, P. Kim, N. B. Zhitenev, and J. A. Stroscio, Physical Review Letters 109, 116802 (2012).

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Joseph Stroscio
301-975-3716

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

NIST Publication Database:

Journal Web Site:

Related News Press

News and information

Strength in numbers: Researchers develop the first-ever quantum device that detects and corrects its own errors March 4th, 2015

New research could lead to more efficient electrical energy storage March 4th, 2015

Energy-generating cloth could replace batteries in wearable devices March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Graphene

New research could lead to more efficient electrical energy storage March 4th, 2015

UC research partnership explores how to best harness solar power March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Laboratories

New research could lead to more efficient electrical energy storage March 4th, 2015

Imaging

Forbidden quantum leaps possible with high-res spectroscopy March 2nd, 2015

International research partnership tricks the light fantastic March 2nd, 2015

Govt.-Legislation/Regulation/Funding/Policy

New research could lead to more efficient electrical energy storage March 4th, 2015

Energy-generating cloth could replace batteries in wearable devices March 4th, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Discoveries

Energy-generating cloth could replace batteries in wearable devices March 4th, 2015

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Announcements

Experiment and theory unite at last in debate over microbial nanowires: New model and experiments settle debate over metallic-like conductivity of microbial nanowires in bacterium March 4th, 2015

Magnetic vortices in nanodisks reveal information: Researchers from Dresden and Jülich use microwaves to read out information from smallest storage devices March 4th, 2015

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Tools

Keysight Technologies Shifts to Direct Sales of High-Performance Products in North America March 3rd, 2015

Forbidden quantum leaps possible with high-res spectroscopy March 2nd, 2015

International research partnership tricks the light fantastic March 2nd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

Quantum nanoscience

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

Quantum many-body systems on the way back to equilibrium: Advances in experimental and theoretical physics enable a deeper understanding of the dynamics and properties of quantum many-body systems February 25th, 2015

Quantum research past, present and future for discussion at AAAS February 16th, 2015

Exotic states materialize with supercomputers February 12th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE