Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Key Property of Graphene Sustained Over Wide Ranges of Density and Energy

Abstract:
A collaboration led by researchers from the NIST Center for Nanoscale Science and Technology has shown for the first time that charge carriers in graphene continue to behave as massless particles, like photons, over wider ranges of both density and energy than previously measured or modeled.* Graphene, a single layer of carbon atoms, is a material of great scientific and technological interest in part because it conducts electrons at high speed. However, in order for graphene to achieve its promise as a component of future electronic devices, it is important to understand at a fundamental level how charge carriers in the material interact with each other.

Key Property of Graphene Sustained Over Wide Ranges of Density and Energy

Gaithersburg, MD | Posted on November 15th, 2012

The researchers used scanning tunneling spectroscopy measurements of the magnetic quantum energy levels of the graphene charge carriers to determine the changes in velocity of the charge carriers. Using a CNST-developed technique called "gate mapping scanning tunneling spectroscopy," the researchers measured the energy levels as they changed the density of the carriers in the graphene by applying different potentials between a conducting gate and the two-dimensional graphene sheet. They established that the graphene carriers retain a proportional relationship between energy and momentum—a "linear dispersion" characteristic of massless particles—across an unexpectedly broad range of energies and densities, from electrons to holes. They were also able to show that when the density of carriers in graphene is lowered, the effect of each electron on other electrons increases, resulting in higher velocities than expected. These surprising results are important both for understanding the physics of future graphene devices and because they will help guide the development of more accurate theoretical models of the interactions between electrons in two-dimensional systems.

*Renormalization of the graphene dispersion velocity determined from scanning tunneling spectroscopy, J. Chae, S. Jung, A. F. Young, C. R. Dean, L. Wang, Y. Gao, K. Watanabe, T. Taniguchi, J. Hone, K. L. Shepard, P. Kim, N. B. Zhitenev, and J. A. Stroscio, Physical Review Letters 109, 116802 (2012).

####

About National Institute of Standards and Technology (NIST)
The National Institute of Standards and Technology (NIST) is an agency of the U.S. Department of Commerce.

For more information, please click here

Contacts:
Joseph Stroscio
301-975-3716

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

NIST Publication Database:

Journal Web Site:

Related News Press

News and information

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Laboratories

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

ORNL demonstrates large-scale technique to produce quantum dots May 21st, 2016

Imaging

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Graphene/ Graphite

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

Graphene makes rubber more rubbery May 23rd, 2016

Graphene: Progress, not quantum leaps May 23rd, 2016

Govt.-Legislation/Regulation/Funding/Policy

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Discoveries

PETA science group publishes a review on pulmonary effects of nanomaterials: Archives of Toxicology publishes a review of scientific studies on fibrotic potential of nanomaterials May 26th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Announcements

PETA science group publishes a review on pulmonary effects of nanomaterials: Archives of Toxicology publishes a review of scientific studies on fibrotic potential of nanomaterials May 26th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Tools

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

More light on cancer: Scientists created nanoparticles to highlight cancer cells May 21st, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Carnegie Mellon develops bio-mimicry method for preparing and labeling stem cells: Method allows researchers to prepare mesenchymal stem cells and monitor them using MRI May 19th, 2016

Quantum nanoscience

Researchers demonstrate size quantization of Dirac fermions in graphene: Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices May 20th, 2016

Graphene: A quantum of current - When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene May 20th, 2016

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

Theorists smooth the way to modeling quantum friction: New paradigm offers a strategy for solving one of quantum mechanics' oldest problems May 18th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic