Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > NIST study suggests carbon nanotubes may protect DNA from oxidation

Scanning electron microscope image of a typical sample of the NIST single-wall carbon nanotube soot standard reference material. Recent NIST research suggests that, at least in the laboratory, carbon nanotubes may help protect DNA molecules from damage by oxidation. The image shows an area just over a micrometer wide. (Color added for clarity.)

Credit: Credit: Vladar, NIST
Scanning electron microscope image of a typical sample of the NIST single-wall carbon nanotube soot standard reference material. Recent NIST research suggests that, at least in the laboratory, carbon nanotubes may help protect DNA molecules from damage by oxidation. The image shows an area just over a micrometer wide. (Color added for clarity.)

Credit: Credit: Vladar, NIST

Abstract:
Researchers at the National Institute of Standards and Technology (NIST) have provided evidence in the laboratory that single-wall carbon nanotubes (SWCNTs) may help protect DNA molecules from damage by oxidation. In nature, oxidation is a common chemical process in which a reactive chemical removes electrons from DNA and may increase the chance for mutations in cells. More studies are needed to see if the in vitro protective effect of nanotubes reported in the laboratory also occurs in vivo, that is, within a living organism.

NIST study suggests carbon nanotubes may protect DNA from oxidation

Gaithersburg, MD | Posted on November 15th, 2012

"Our findings don't tell us whether carbon nanotubes are good or bad for people and the environment," says Elijah Petersen, one of the authors of the study. "However, the results do help us better understand the mechanisms by which nanotubes might interact with biomolecules."

Single-wall carbon nanotubes—tiny hollow rods that are one-atom-thick sheets of graphene rolled into cylinders 10,000 times smaller in diameter than a human hair—are prized for their extraordinary optical, mechanical, thermal and electronic properties. They are being used to produce lightweight and extremely strong materials, enhance the capabilities of devices such as sensors, and provide a novel means of delivering drugs with great specificity. However, as carbon nanotubes become increasingly incorporated into consumer and medical products, the public concern about their potential environmental, health and safety (EHS) risks has grown. Scientifically determining the level of risk associated with the carbon nanotubes has been challenging, with different studies showing conflicting results on cellular toxicity. One of the components lacking in these studies is an understanding of what physically happens at the molecular level.

In a recent paper,* NIST researchers investigated the impact of ultrasonication on a solution of DNA fragments known as oligomers in the presence and absence of carbon nanotubes. Ultrasonication is a standard laboratory technique that uses high-frequency sound waves to mix solutions, break open cells or process slurries. The process can break water molecules into highly reactive agents such as hydroxyl radicals and hydrogen peroxide that are similar to the oxidative chemicals that commonly threaten mammalian cell DNA, although the experimental levels from sonication are much greater than those found naturally within cells. "In our experiment, we were looking to see if the nanotubes enhanced or deterred oxidative damage to DNA," Petersen says.

Contrary to the expectation that carbon nanotubes will damage biomolecules they contact, the researchers found that overall levels of accumulated DNA damage were significantly reduced in the solutions with nanotubes present. "This suggests that the nanotubes may provide a protective effect against oxidative damage to DNA," Petersen says.

A possible explanation for the surprising result, Petersen says, is that the carbon nanotubes may act as scavengers, binding up the oxidative species in solution and preventing them from interacting with DNA. "We also saw a decrease in DNA damage when we did ultrasonication in the presence of dimethyl sulfoxide (DMSO), a chemical compound known to be a hydroxyl radical scavenger," Petersen says.

Petersen says that a third experiment where ultrasonication was performed in the presence of DMSO and SWCNTs at the same time produced an additive effect, reducing the DNA damage levels more significantly than either treatment alone.

This research is part of NIST's work to help characterize the potential EHS risks of nanomaterials, and develop methods for identifying and measuring them.

* E.J. Petersen, X. Tu, M. Dizdaroglu, M. Zheng and B.C. Nelson. Protective roles of single-wall carbon nanotubes in ultrasonication-induced DNA base damage. Small (2012), DOI: 10/1002/smll.201201217.

####

For more information, please click here

Contacts:
Michael E. Newman

301-975-3025

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Immune system is key ally in cyberwar against cancer: Rice University study yields new two-step strategy for weakening cancer September 23rd, 2014

Los Alamos Researchers Uncover New Properties in Nanocomposite Oxide Ceramics for Reactor Fuel, Fast-Ion Conductors: Misfit dislocations are key to transport properties across material interfaces September 23rd, 2014

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

Laboratories

Los Alamos Researchers Uncover New Properties in Nanocomposite Oxide Ceramics for Reactor Fuel, Fast-Ion Conductors: Misfit dislocations are key to transport properties across material interfaces September 23rd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Immune system is key ally in cyberwar against cancer: Rice University study yields new two-step strategy for weakening cancer September 23rd, 2014

Los Alamos Researchers Uncover New Properties in Nanocomposite Oxide Ceramics for Reactor Fuel, Fast-Ion Conductors: Misfit dislocations are key to transport properties across material interfaces September 23rd, 2014

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Nanotubes/Buckyballs

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Nanomedicine

Immune system is key ally in cyberwar against cancer: Rice University study yields new two-step strategy for weakening cancer September 23rd, 2014

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

Engineered proteins stick like glue — even in water: New adhesives based on mussel proteins could be useful for naval or medical applications September 22nd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Discoveries

Immune system is key ally in cyberwar against cancer: Rice University study yields new two-step strategy for weakening cancer September 23rd, 2014

Los Alamos Researchers Uncover New Properties in Nanocomposite Oxide Ceramics for Reactor Fuel, Fast-Ion Conductors: Misfit dislocations are key to transport properties across material interfaces September 23rd, 2014

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

Announcements

Immune system is key ally in cyberwar against cancer: Rice University study yields new two-step strategy for weakening cancer September 23rd, 2014

Los Alamos Researchers Uncover New Properties in Nanocomposite Oxide Ceramics for Reactor Fuel, Fast-Ion Conductors: Misfit dislocations are key to transport properties across material interfaces September 23rd, 2014

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Nanobiotechnology

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

CiQUS researchers design an artificial nose to detect DNA differentiation with single nucleotide resolution September 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE