Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > NIST study suggests carbon nanotubes may protect DNA from oxidation

Scanning electron microscope image of a typical sample of the NIST single-wall carbon nanotube soot standard reference material. Recent NIST research suggests that, at least in the laboratory, carbon nanotubes may help protect DNA molecules from damage by oxidation. The image shows an area just over a micrometer wide. (Color added for clarity.)

Credit: Credit: Vladar, NIST
Scanning electron microscope image of a typical sample of the NIST single-wall carbon nanotube soot standard reference material. Recent NIST research suggests that, at least in the laboratory, carbon nanotubes may help protect DNA molecules from damage by oxidation. The image shows an area just over a micrometer wide. (Color added for clarity.)

Credit: Credit: Vladar, NIST

Abstract:
Researchers at the National Institute of Standards and Technology (NIST) have provided evidence in the laboratory that single-wall carbon nanotubes (SWCNTs) may help protect DNA molecules from damage by oxidation. In nature, oxidation is a common chemical process in which a reactive chemical removes electrons from DNA and may increase the chance for mutations in cells. More studies are needed to see if the in vitro protective effect of nanotubes reported in the laboratory also occurs in vivo, that is, within a living organism.

NIST study suggests carbon nanotubes may protect DNA from oxidation

Gaithersburg, MD | Posted on November 15th, 2012

"Our findings don't tell us whether carbon nanotubes are good or bad for people and the environment," says Elijah Petersen, one of the authors of the study. "However, the results do help us better understand the mechanisms by which nanotubes might interact with biomolecules."

Single-wall carbon nanotubes—tiny hollow rods that are one-atom-thick sheets of graphene rolled into cylinders 10,000 times smaller in diameter than a human hair—are prized for their extraordinary optical, mechanical, thermal and electronic properties. They are being used to produce lightweight and extremely strong materials, enhance the capabilities of devices such as sensors, and provide a novel means of delivering drugs with great specificity. However, as carbon nanotubes become increasingly incorporated into consumer and medical products, the public concern about their potential environmental, health and safety (EHS) risks has grown. Scientifically determining the level of risk associated with the carbon nanotubes has been challenging, with different studies showing conflicting results on cellular toxicity. One of the components lacking in these studies is an understanding of what physically happens at the molecular level.

In a recent paper,* NIST researchers investigated the impact of ultrasonication on a solution of DNA fragments known as oligomers in the presence and absence of carbon nanotubes. Ultrasonication is a standard laboratory technique that uses high-frequency sound waves to mix solutions, break open cells or process slurries. The process can break water molecules into highly reactive agents such as hydroxyl radicals and hydrogen peroxide that are similar to the oxidative chemicals that commonly threaten mammalian cell DNA, although the experimental levels from sonication are much greater than those found naturally within cells. "In our experiment, we were looking to see if the nanotubes enhanced or deterred oxidative damage to DNA," Petersen says.

Contrary to the expectation that carbon nanotubes will damage biomolecules they contact, the researchers found that overall levels of accumulated DNA damage were significantly reduced in the solutions with nanotubes present. "This suggests that the nanotubes may provide a protective effect against oxidative damage to DNA," Petersen says.

A possible explanation for the surprising result, Petersen says, is that the carbon nanotubes may act as scavengers, binding up the oxidative species in solution and preventing them from interacting with DNA. "We also saw a decrease in DNA damage when we did ultrasonication in the presence of dimethyl sulfoxide (DMSO), a chemical compound known to be a hydroxyl radical scavenger," Petersen says.

Petersen says that a third experiment where ultrasonication was performed in the presence of DMSO and SWCNTs at the same time produced an additive effect, reducing the DNA damage levels more significantly than either treatment alone.

This research is part of NIST's work to help characterize the potential EHS risks of nanomaterials, and develop methods for identifying and measuring them.

* E.J. Petersen, X. Tu, M. Dizdaroglu, M. Zheng and B.C. Nelson. Protective roles of single-wall carbon nanotubes in ultrasonication-induced DNA base damage. Small (2012), DOI: 10/1002/smll.201201217.

####

For more information, please click here

Contacts:
Michael E. Newman

301-975-3025

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New non-invasive method can detect Alzheimer's disease early: MRI probe technology shows brain toxins in living animals for first time December 22nd, 2014

Piezoelectricity in a 2-D semiconductor: Berkeley Lab researchers discovery of piezoelectricty in molybdenum disulfide holds promise for future MEMS December 22nd, 2014

Quantum physics just got less complicated December 22nd, 2014

Enzyme Biosensor Used for Rapid Measurement of Drug December 22nd, 2014

Laboratories

Piezoelectricity in a 2-D semiconductor: Berkeley Lab researchers discovery of piezoelectricty in molybdenum disulfide holds promise for future MEMS December 22nd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Mysteries of ‘Molecular Machines’ Revealed: Phenix software uses X-ray diffraction spots to produce 3-D image December 22nd, 2014

Piezoelectricity in a 2-D semiconductor: Berkeley Lab researchers discovery of piezoelectricty in molybdenum disulfide holds promise for future MEMS December 22nd, 2014

Atom-thick CCD could capture images: Rice University scientists develop two-dimensional, light-sensitive material December 20th, 2014

Oregon researchers glimpse pathway of sunlight to electricity: Collaboration with Lund University uses modified UO spectroscopy equipment to study 'maze' of connections in photoactive quantum dots December 19th, 2014

Nanotubes/Buckyballs

A sponge-like molecular cage for purification of fullerenes December 15th, 2014

'Trojan horse' proteins used to target hard-to-reach cancers: Scientists at Brunel University London have found a way of targeting hard-to-reach cancers and degenerative diseases using nanoparticles, but without causing the damaging side effects the treatment normally brings December 11th, 2014

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Green meets nano: Scientists at TU Darmstadt create multifunctional nanotubes using nontoxic materials December 3rd, 2014

Nanomedicine

New non-invasive method can detect Alzheimer's disease early: MRI probe technology shows brain toxins in living animals for first time December 22nd, 2014

Enzyme Biosensor Used for Rapid Measurement of Drug December 22nd, 2014

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

Iranian Researchers Produce Electrical Pieces Usable in Human Body December 18th, 2014

Discoveries

Mysteries of ‘Molecular Machines’ Revealed: Phenix software uses X-ray diffraction spots to produce 3-D image December 22nd, 2014

New non-invasive method can detect Alzheimer's disease early: MRI probe technology shows brain toxins in living animals for first time December 22nd, 2014

Piezoelectricity in a 2-D semiconductor: Berkeley Lab researchers discovery of piezoelectricty in molybdenum disulfide holds promise for future MEMS December 22nd, 2014

Enzyme Biosensor Used for Rapid Measurement of Drug December 22nd, 2014

Announcements

New non-invasive method can detect Alzheimer's disease early: MRI probe technology shows brain toxins in living animals for first time December 22nd, 2014

Piezoelectricity in a 2-D semiconductor: Berkeley Lab researchers discovery of piezoelectricty in molybdenum disulfide holds promise for future MEMS December 22nd, 2014

Quantum physics just got less complicated December 22nd, 2014

Enzyme Biosensor Used for Rapid Measurement of Drug December 22nd, 2014

Nanobiotechnology

Mysteries of ‘Molecular Machines’ Revealed: Phenix software uses X-ray diffraction spots to produce 3-D image December 22nd, 2014

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

UCLA engineers first to detect and measure individual DNA molecules using smartphone microscope December 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE