Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Touch-sensitive plastic skin heals itself

A researcher slices the self-healing skin with a scalpel. Photo: Linda A. Cicero, Stanford News Service
A researcher slices the self-healing skin with a scalpel. Photo: Linda A. Cicero, Stanford News Service

Abstract:
Nobody knows the remarkable properties of human skin like the researchers struggling to emulate it. Not only is our skin sensitive, sending the brain precise information about pressure and temperature, but it also heals efficiently to preserve a protective barrier against the world. Combining these two features in a single synthetic material presented an exciting challenge for Stanford Chemical Engineering Professor Zhenan Bao and her team.

Touch-sensitive plastic skin heals itself

Stanford, CA | Posted on November 11th, 2012

Now, they have succeeded in making the first material that can both sense subtle pressure and heal itself when torn or cut. Their findings will be published on November 11 in the journal Nature Nanotechnology.

In the last decade, there have been major advances in synthetic skin, said Bao, the study's principal investigator, but even the most effective self-healing materials had major drawbacks. Some had to be exposed to high temperatures, making them impractical for day-to-day use. Others could heal at room temperature, but repairing a cut changed their mechanical or chemical structure, so they could only heal themselves once. Most importantly, no self-healing material was a good bulk conductor of electricity, a crucial property.

"To interface this kind of material with the digital world, ideally you want them to be conductive," said Benjamin Chee-Keong Tee, first author of the paper.

A NEW RECIPE

The researchers succeeded by combining two ingredients to get what Bao calls "the best of both worlds" - the self-healing ability of a plastic polymer and the conductivity of a metal.

They started with a plastic consisting of long chains of molecules joined by hydrogen bonds - the relatively weak attractions between the positively charged region of one atom and the negatively charged region of the next.

"These dynamic bonds allow the material to self-heal," said Chao Wang, a co-first author of the research. The molecules easily break apart, but then when they reconnect, the bonds reorganize themselves and restore the structure of the material after it gets damaged, he said. The result is a bendable material, which even at room temperature feels a bit like saltwater taffy left in the fridge.

To this resilient polymer, the researchers added tiny particles of nickel, which increased its mechanical strength. The nanoscale surfaces of the nickel particles are rough, which proved important in making the material conductive. Tee compared these surface features to "mini-machetes," with each jutting edge concentrating an electrical field and making it easier for current to flow from one particle to the next.

The result was a polymer with uncommon characteristics. "Most plastics are good insulators, but this is an excellent conductor," Bao said.

BOUNCING BACK

The next step was to see how well the material could restore both its mechanical strength and its electrical conductivity after damage.

The researchers took a thin strip of the material and cut it in half with a scalpel. After gently pressing the pieces together for a few seconds, they found the material gained back 75 percent of its original strength and electrical conductivity. The material was restored close to 100 percent in about 30 minutes. "Even human skin takes days to heal. So I think this is quite cool," said Tee.

What's more, the same sample could be cut repeatedly in the same place. After 50 cuts and repairs, a sample withstood bending and stretching just like the original.

The composite nature of the material created a new engineering challenge for the team. Bao and her co-authors found that although nickel was key to making the material strong and conductive, it also got in the way of the healing process, preventing the hydrogen bonds from reconnecting as well as they should.

For future generations of the material, Bao said the team might adjust the size and shape of the nanoparticles, or even the chemical properties of the polymer, to get around this trade-off.

Nonetheless, Wang said the extent of these self-healing properties was truly surprising: "Before our work, it was very hard to imagine that this kind of flexible, conductive material could also be self-healing."

SENSITIVE TO THE TOUCH

The team also explored how to use the material as a sensor. For the electrons that make up an electrical current, trying to pass through this material is like trying to cross a stream by hopping from stone to stone. The stones in this analogy are the nickel particles, and the distance separating them determines how much energy an electron will need to free itself from one stone and move to another.

Twisting or putting pressure on the synthetic skin changes the distance between the nickel particles and, therefore, the ease with which electrons can move. These subtle changes in electrical resistance can be translated into information about pressure and tension on the skin.

Tee says that the material is sensitive enough to detect the pressure of a handshake. It might, therefore, be ideal for use in prosthetics, Bao added. The material is sensitive not only to downward pressure but also to flexion, so a prosthetic limb might someday be able to register the degree of bend in a joint.

Tee pointed out other commercial possibilities. Electrical devices and wires coated in this material could repair themselves and get electricity flowing again without costly and difficult maintenance, particularly in hard-to-reach places, such as inside building walls or vehicles.

Next up, Bao said the team's goal is to make the material stretchy and transparent, so that it might be suitable for wrapping and overlaying electronic devices or display screens.

Ranulfo Allen, a graduate chemical engineering student, also contributed to this research.

The research was supported by the Air Force Office of Scientific Research (AFOSR).

This article was written by Kelly Servick, a science-writing intern working for the Stanford University School of Engineering.

####

For more information, please click here

Contacts:
Andrew Myers

650-736-2245

Copyright © Stanford School of Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

When Dirac meets frustrated magnetism August 3rd, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Nanoreactor strategy generates superior supported bimetallic catalysts July 31st, 2020

Display technology/LEDs/SS Lighting/OLEDs

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Printed perovskite LEDs: An innovative technique towards a new standard process of electronics manufacturing June 12th, 2020

Govt.-Legislation/Regulation/Funding/Policy

Physicists find misaligned carbon sheets yield unparalleled properties July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Nanoreactor strategy generates superior supported bimetallic catalysts July 31st, 2020

Study: Mapping crystal shapes could fast-track 2D materials: Experts call for global effort to clear hurdles to mass production July 27th, 2020

Nanomedicine

Izon Science receives $10.5M investment from Bolton Equities: Christchurch-headquartered nanotech company secures investment to accelerate global growth; appoints top board chairman and directors July 28th, 2020

Arrowhead Pharmaceuticals Hosts Key Opinion Leader Webinar on ARO-ENaC for Treatment of Cystic Fibrosis July 28th, 2020

Silver-plated gold nanostars detect early cancer biomarkers: New optical sensing platform can detect genomic cancer biomarkers directly in patient tissues July 24th, 2020

HORIBA Medical and CEA-Leti Strengthen Their Partnership to Develop Tomorrow’s Diagnostics at the Point of Care July 21st, 2020

Materials/Metamaterials

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Study: Mapping crystal shapes could fast-track 2D materials: Experts call for global effort to clear hurdles to mass production July 27th, 2020

Discovery of disordered nanolayers in intermetallic alloys: Resolving alloys' strength-ductility trade-off and thermal instability July 24th, 2020

Announcements

When Dirac meets frustrated magnetism August 3rd, 2020

New printing process advances 3D capabilities: Technology aims to improve quality of products used in business, industry and at home July 31st, 2020

TU Graz researchers synthesize nanoparticles tailored for special applications July 31st, 2020

Scientists discover new class of semiconducting entropy-stabilized materials July 31st, 2020

Military

Physicists find misaligned carbon sheets yield unparalleled properties July 31st, 2020

Researchers find safeguards for quantum communications July 10th, 2020

A Tremendous Recognition’ Engineer Jonathan Klamkin earns prestigious award from DARPA June 23rd, 2020

Fluorocarbon bonds are no match for light-powered nanocatalyst: Rice U. lab unveils catalyst that can break problematic C-F bonds June 22nd, 2020

Automotive/Transportation

New cobalt-free lithium-ion battery reduces costs without sacrificing performance July 17th, 2020

First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020

Oil & gas and automotive sectors will benefit from durable polymers with graphene nanotubes May 14th, 2020

Wiring the quantum computer of the future: A novel simple build with existing technology: The basic units of a quantum computer can be rearranged in 2D to solve typical design and operation challenges April 24th, 2020

Construction

Discovery of disordered nanolayers in intermetallic alloys: Resolving alloys' strength-ductility trade-off and thermal instability July 24th, 2020

First measurement of electron energy distributions, could enable sustainable energy technologies June 5th, 2020

Sustainable structural material for plastic substitute May 11th, 2020

Scientists came up with nanoconcrete for casting under negative temperature conditions March 6th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project