Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > What if the nanoworld slides: A new study to better understand how friction works

What if the nanoworld slides?

Credit: SISSA
What if the nanoworld slides?

Credit: SISSA

Abstract:
A study published by Andrea Vanossi, Nicola Manini and Erio Tosatti - three SISSA researchers - in PNAS (Proceedings of the National Academy of Sciences) provides a new tool to better understand how sliding friction works in nanotribology, through colloidal crystals.

What if the nanoworld slides: A new study to better understand how friction works

Trieste, Italy | Posted on November 8th, 2012

By theoretically studying these systems of charged microparticles, researchers are able to analyze friction forces through molecular dynamics simulations with accuracy never experienced before.

"There are several and very concrete potentialities", stated Andrea Vanossi, one of the members of the research group. "Just think of the constant miniaturization of high-tech components and of all the different nanotechnology sectors: if we understand how friction works at these levels, we will be able to create even more effective molecular motors or functional microsystems".

Colloidals are part of our everyday life (e.g. milk, asphalt or smoke) and they differentiate according to the state of the dispersed and dispersing substance (liquid, solid or gaseous).

The simulations were performed by SISSA in collaboration with ICTP, the Department of Physics in Milan and the CNR-IOM Institute for Materials Manufacturing and they allowed understanding what happens when a colloidal monolayer slides against an optical reticle modifying some parameters such as surface corrugation, drift speed or contact geometry.

The research method is also something new. Before this simulation was performed, only some recent experiments carried out in Germany tried for the first time to describe the behaviour of individual particles of a colloid in friction conditions, but never in such a precise way.

More in detail, researchers also suggest a way to directly extract the energy lost in friction by using the sliding data of the colloid. "This study is innovative also because it will allow predicting the different regimes of static friction realized according to the density of colloids and the strength of the optical reticle", added Erio Tosatti, another member of the research group. "All this lets us assume that crystalline solid surfaces will act in a similar way. We have never been able to make such a hypothesis before".

This study will open the way to new systems to explore the complexity of similar events, maybe at a microscopic scale.

####

About International School of Advanced Studies (SISSA)
The International School for Advanced Studies (SISSA), founded in 1978 and the first institution in Italy to promote post-graduate courses to achieve a Doctor Philosophiae (or PhD) degree, is a centre of excellence in the Italian and international university context. It encompasses around 65 teachers, 100 post docs and 245 PhD students, and is located in Trieste, in an over 100,000 square-metre large campus with a wonderful view on the Gulf of Trieste.

Established as a high-level training school and as a centre for theoretical research in mathematics and physics, in the 1990s SISSA broadened its interests to include new cutting-edge disciplines, such as cognitive neuroscience and neurobiology. Today its PhD courses provide new and innovative post-graduate curricula, and SISSA is considered a reference model in the international scientific scenario under every respect, comparable to few other research and teaching institutes worldwide.

For more information, please click here

Contacts:
Federica Sgorbissa

39-040-378-7644

Copyright © International School of Advanced Studies (SISSA)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Physics

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Particle zoo in a quantum computer: First experimental quantum simulation of particle physics phenomena June 23rd, 2016

Researchers refine method for detecting quantum entanglement June 18th, 2016

Discoveries

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Announcements

No need in supercomputers: Russian scientists suggest a PC to solve complex problems tens of times faster than with massive supercomputers June 30th, 2016

Surprising qualities of insulator ring surfaces: Surface phenomena in ring-shaped topological insulators are just as controllable as those in spheres made of the same material June 30th, 2016

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Research partnerships

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

FEI and University of Liverpool Announce QEMSCAN Research Initiative: University of Liverpool will utilize FEIís QEMSCAN technology to gain a better insight into oil and gas reserves & potentially change the approach to evaluating them June 22nd, 2016

Tailored DNA shifts electrons into the 'fast lane': DNA nanowire improved by altering sequences June 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic